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Abstract—Maritime radars are prevalently adopted to capture
the vessel’s omnidirectional data as imagery. Nevertheless, inherent
challenges persist with marine radars, including limited frequency,
suboptimal resolution, and indeterminate detections. Additionally,
the scarcity of discernible landmarks in the vast marine expanses
remains a challenge, resulting in consecutive scenes that often lack
matching feature points. In this context, we introduce a resilient
maritime radar scan representation LodeStar, and an enhanced
feature extraction technique tailored for marine radar applications.
Moreover, we embark on estimating marine radar odometry uti-
lizing a semi-direct approach. LodeStar-based approach markedly
attenuates the errors in odometry estimation, and our assertion is
corroborated through meticulous experimental validation.

Index Terms—Marine robotics, range sensing, simultaneous
localization and mapping (SLAM).

I. INTRODUCTION

W E ARE situated within an epoch dominated by au-
tonomous vehicles, where the sensors and algorithms

underlying autonomous navigation have experienced exponen-
tial advancements. In this context, an escalating demand for
autonomous navigation in unmanned surface vehicle (USV)
seems logical. However, challenges persist in maritime sensing
and decision-making due to environmental constraints. Typi-
cally, the perceivable object and the vessel are separated by
considerable distances, thereby rendering short-range sensors,
such as cameras and Light Detection and Ranging (LiDAR),
insufficient in generating pertinent features for the operational
algorithm. The use of long-range sensors, such as Sonar or
Radar, is a standard practice in maritime operations, yet these
sensors are infamous for their subpar resolution.

In the face of these challenges, substantial efforts continue
to address environmental constraints that impede sensor
performance. Of particular note is the progress in radar analysis,
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Fig. 1. Terrestrial radar-based odometry estimation techniques cannot be
directly transposed to marine radar systems. As illustrated in the upper right side,
even the most advanced radar odometry methodologies fail to generate accurate
trajectories. Nonetheless, our maritime place descriptor LodeStar, incorporated
with marine-specific features, effectively captures the rotational dynamics of
subsequent frames, leading to enhanced odometry correction.

especially in adverse weather conditions where cameras and
LiDAR systems are rendered inoperative. Despite the low
resolution, enhanced processing of radar data could potentially
enable place recognition [1], [2] and provide LiDAR-equivalent
vehicular odometry [3], [4]. Given that radar imaging is a
prevalent strategy in marine robotics, we have undertaken an
effort to extract vehicular motion data from maritime radar in
a manner analogous to the advancements witnessed in ground
radar development.

The effective use of marine radar necessitates overcoming
several key challenges. Firstly, Radar Cross Section (RCS),
intensity return in radar measurement, is quantized and nearly
binary in marine radar. While ground radar generates a broad
range of RCS values, marine radar restricts the receipt of a di-
verse range of intensity detections. Second challenge is the high
reliance on coastal contour. Whereas buildings and roads serve
as distinctive features for ground radar, in oceanic environments,
the most reliable features predominantly lie within the contours
of the coast. Accurate representation of coastal places is required
for marine radar. Last one is the ambiguity and uncertainty of
detected radar pixels. A false alarm of a single pixel can lead to
significant drift in marine radar odometry, subsequently leading
to substantial errors in the ensuing simultaneous localization and
mapping (SLAM) operation. Given that the radar’s detection
range spans about a 2−3 km, the unit pixel of the Cartesian
imagery results starts from the meter unit.

In this paper, we propose a methodology for maritime radar-
only odometry estimation that addresses the aforementioned
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challenges. We design a counterstrategy to the limited RCS
levels that extract marine radar feature points and contours.
Additionally, employing our dense radar descriptor, LodeStar,
we estimate the vehicle rotation and generate a rotated point-
cloud to enable swift and accurate convergence of sparse point
matching. Fig. 1 provides an visual representation of procedures
and improvements. The detailed contributions of our paper are
as follows:
� LodeStar: Maritime Radar Descriptor

The LodeStar is a star-shaped descriptor encapsulating the
radial context information derived from maritime radar.
The periodic form of the descriptor enables the conduct
of circular cross-correlation, effectively utilized for dense
searching of optimal rotational change values.

� Robust Maritime Features for Radar
Identifying plausible feature points within marine radar
data poses a complex problem due to the inherent ambigu-
ity of radar detection results. Therefore, we have defined
specific feature points within the marine radar data that
assist in deriving point normal.

� Semi-direct Maritime Odometry Estimation
While dense methods offer comprehensive search capabil-
ities, they suffer from high computation time complexity.
Conversely, sparse methods, while efficient, struggle to
fully grasp the overall context of sequential inputs. By
amalgamating the strengths of both methods, we propose
a combined approach that has the potential to significantly
enhance the accuracy of odometry.

II. RELATED WORK

The applicability of scanning radar used terrestrially is
demonstrated by its similarity to marine radar. Following the
taxonomy by [5], we categorize the existing work into three
main strands: sparse, dense, and hybrid. In addition, we further
cover the studies on marine radar odometry.

A. Sparse Radar Odometry

Sparse radar odometry encompasses methods based on fea-
tures and scan-matching. HERO [6], a feature-based method,
is notable for its use of unsupervised learning to extract fea-
tures from Cartesian radar images. The research conducted by
Lim et al. [7] adopts the mechanism of re-estimating outliers
during the process of rotation and translation estimation. The
work of Cen and Newman [8], [9] makes use of non-visual
features, derived from the statistical properties of the radar power
return.

Contrasting the feature-based methods, scan matching tech-
niques do not require correspondences between two scans. A
notable example of this approach is CFEAR [3], [10], which
determines a transformation that minimizes the point-to-line
distance between a scan and a keyframe. The extraction of
normal vectors in this method is conducted in two stages:
initially, the top k points with the strongest returns are retained
and subsequently clustered to form a surface. Based on these
surfaces, the normal vectors are computed using the eigenvectors
derived from the covariance matrix of each surface. Furthermore,
Kung et al. [11] introduces a probabilistic radar submap, con-
structed based on sparse Gaussian Mixture Models. They then
employ the Normal Distribution Transform (NDT) to compute
the transformation between two consecutive scans.

In odometry techniques that employ sparse methodologies,
the availability of robust feature points is directly linked to the
performance. Nevertheless, procuring such robust features and
assigning their correspondences present considerable challenges
in marine environments.

B. Dense Radar Odometry

Dense radar odometry methods utilize complete radar scans
as input for the calculation of relative transformations between
scans. One of the early approaches [12] employs the Fourier-
Mellin Transform (FMT), an image restoration method, to cal-
culate the relative transformations. Similarly, Park et al. [13]
applied FMT in two stages. Initially, rotation and initial esti-
mate of translation are determined from a downsampled im-
age. Subsequently, the translation part is recalculated using a
full-resolution image. By combining this methodology with
keyframe selection and graph optimization, it can achieve
heightened accuracy.

In contrast to model-based odometry, research has also been
conducted on dense radar odometry employing deep learning
methods. For instance, Barnes et al. [14] utilized a U-net style
convolutional neural network (CNN) to create masks that sup-
press image noise. A subsequent improvement [15] decouples
the rotation and translation. Leveraging the translation invari-
ance property of the Fourier Transform in polar coordinates, the
search time for identifying the maximum cross-correlation can
be significantly reduced.

Direct methods exhibit robustness in analyzing the context of
the scene, facilitating an approximate estimation of the vessel’s
pose. Nonetheless, due to the low resolution of marine radar
imagery, achieving precise pose estimation remains a formidable
challenge in direct methods.

C. Hybrid and Marine Radar Odometry

Given the unique strengths of both sparse and dense odometry,
their combined use could yield enhanced benefits. Monaco and
Brennan [16] employed the sparse method for translation esti-
mation and the dense method for rotation computation. However,
this strategy does not optimally leverage the concurrent benefits
of sparse and dense methodologies, choosing instead to apply
them independently. Recognizing this, the potential benefits of
a hybrid approach to radar odometry, harnessing the strengths
of both sparse and dense methods, are worth investigating.
However, existing marine odometry with scanning radar have
primarily focused on features [17], [18], [19]. To bridge this
gap, our approach introduces semi-direct maritime odometry,
integrating the dense descriptor LodeStar with sparse maritime
feature extraction and matching.

III. METHOD

The method proposed in this paper is an odometry estima-
tion, which is exclusively reliant on maritime radar data. As
illustrated in Fig. 2, the only measurement input used is derived
from maritime radar. Our methodology uses two branches: we
integrate radar image data into the matching process and utilize
point cloud data for feature-driven matching. Maritime radar
data is presented in the form of Cartesian image data. This data
is leveraged to deduce coarse rotational information using a
robust descriptor called as LodeStar. To enhance computational
efficiency during optimization and to boost overall accuracy,
we provide LodeStar-based rotation-corrected images to carry
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Fig. 2. Proposed framework for maritime odometry estimation. Exclusively
using marine radar imagery, we extract pertinent marine features and the
LodeStar descriptor. Subsequently, we construct an initial rotated point cloud
and identify correspondences between two consecutive frames via a point
normal-based approach. This process derives a rotation-enhanced ego-motion
estimation.

out feature-based transformation estimation. We transform these
rotationally corrected image data into point cloud data. In order
to focus solely on the most dependable point clouds, we ex-
tract feature points specific to maritime contexts and compute
the vehicle motion using a point-to-normal matching method.
Further details and the comprehensive process will be discussed
and illustrated in the subsequent sections of this paper.

A. LodeStar Descriptor

In our effort to design a robust descriptor, we opted to encapsu-
late the spatial information of the harbor area, thereby addressing
the challenges of prior methodologies. The foundational idea
of LodeStar is rooted in the Radon transform [2]; instead our
approach simplifies by focusing on radial-wise integration. A de-
tailed visual depiction for LodeStar is presented in Fig. 3. The de-
scriptor L(θ) corresponding to azimuth angle θ is derived as per

L(θ) =

∫ rmax

0

I(x, y) dr

=

∫ rmax

0

I(rmax − r sin θ, rmax + r cos θ) dr

= L(θ + 2πn), [n ∈ Z]. (1)

The radar’s maximum detection range is represented as rmax,
while the unit range, denoted as r, varies from the center of
the radar image I(x, y). By avoiding integration across the
entire image spectrum, we are able to curtail the computational
burden, thus enhancing efficiency. Given the need to infer
rotational changes from the descriptor, we extended L(θ) as a
periodic function. Cross-correlation was employed to compute
the disparity between the two descriptors. The periodic nature
of L(θ) made it possible to acquire a circular correlation result.

θLi
= argmax

θ

(∫ 2π

0

Li(θ + μ)Li+1(μ) dμ

)
(2)

The circular cross-correlation outcome of the LodeStar
descriptor enables us to define the rotation difference between

Fig. 3. Details of the LodeStar descriptor. From the primary radar imagery,
we compute a radial intensity vector for every θ. Each of these vectors is
subsequently integrated to constitute a column within the integrated radial
intensity matrix. By iterating this process over a period of 2π, we synthesize the
final descriptor.

frames i and i+ 1 as θLi
. This rotation value plays a pivotal

role in generating angular-corrected point cloud data.
[
x′

y′

]
=

[
cos(θLi

) − sin(θLi
)

sin(θLi
) cos(θLi

)

] [
x

y

]
(3)

B. Maritime Radar Feature Extraction

We can transmute radar imagery into a set of pointcloud data,
utilizing two-dimensional bird-eye view coordinates and the
inherent pixel intensity values. Nevertheless, defining cogent
features within the complex, fluctuating maritime environment
remains an intricate task. This section elucidates the method-
ology for extracting distinct features from marine-based radar
datasets.

1) Contour Extraction: Contour extraction and matching of-
fers a macro-environment perspective without relying on in-
ternal data. Excluding points within the contour is beneficial
for point normal estimation, given that radar data cannot com-
prehensively populate the interior of the contour. Additionally,
the contour presents dependable candidates for the k-nearest
feature extraction, mitigating the inclusion of noise. The polyg-
onal contour can be computed using the polar image and the
B-spline method as introduced by Han et al. [18], but in our
approach, we opted for simple contour extraction from the RCS.
We experimentally noticed that some radar products exhibit the
lowest RCS values at contours, while others depict the highest.
Based on the premise that the reflectivity at the boundary differs
from that of the planar area, we implemented a high-pass or
low-pass filter for contour extraction depending on the radar
type.

2) k-Nearest Feature Candidates: On-ground scanning rad-
ars present a diverse and continuous range of RCS levels, and
common practice is to utilize k-strongest points as potential
candidates as done by Adolfsson et al. [3]. Unlike ground radar,
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maritime radar exhibits discrete RCS levels, with a significant
number of points sharing identical RCS values. To pinpoint the
candidates for point normal extraction, we employ a k-nearest
feature extraction approach instead of k-strongest. Adopting the
k-strongest points in the extant methodology was for selecting
robust and dependable points. However, given the almost binary
nature of the RCS of marine radar, extracting the most prominent
point is ineffective. Furthermore, marine radar is a kilometer-
scale long-range sensor, thus the uncertainty associated with
distant points is substantial. We select points nearest to the center
from every angle to mitigate this uncertainty. In conclusion, we
perceive feature points as the non-overlapping, nearest contour
points.

3) Overlapping Data Elimination: Radar imagery is derived
from the systematic, rotational alignment of ongoing radar
scans, updated dynamically by scan vector Vt(t) published at
time t. This indicates that the publication of a radar image
Vt(ti : ti+1) does not necessitate a full revolution completion
of the radar scan. Should the radar image publication frequency
be higher than the radar’s full-rotation frequency, consecutive
image frames may contain identical data, as demonstrated in
Fig. 4. Conversely, rotational and translational glitch may arise
if the radar image data is only refreshed following the scanning of
all angular measurements, as illustrated in Fig. 4. This predica-
ment calls for precise regulation of the radar image frequency.
Pursuing optimal radar imagery necessitates a balance between a
high scan update frequency and preventing radar image overlap.

Ii(x, y) = Vt(t0 : t3)

= Vt(t0 : t1) + Vt(t1 : t2) + Vt(t2 : t3)

� Vt1(t0 : t1) + Vt2(t1 : t2) + Vt3(t2 : t3) = Iparti

� Vt3(t0 : t3) = Ifulli (4)

To encompass distinct radar scan sets within a single image,
we escalated the frequency of radar image data and imple-
mented a subscription dropout to eradicate overlapping regions
Iparti (x, y). If the radar images are derived from a full-rotation
scan, we exploit the integrated image Ifulli (x, y) at the last scan
time. We portrayed the implications of overlap and anomalies
for individual datasets in the results section.

C. Point Normal Matching and Optimization

In our detailed motion estimation framework, we employed
the point normal matching method established by Adolfsson
et al. [3] which represents a current benchmark in the field of
radar odometry estimation. However, the method is inherently
predisposed toward using scanning radars within the context of
autonomous vehicles. Consequently, its direct application to ma-
rine radar imagery yields suboptimal results due to the scarcity
of reliable candidates. Hence, it is necessary to recalibrate its
configuration to better adapt to marine radar environments.
This adjustment process has been thoroughly addressed in the
preceding sections of this work. We have made significant strides
in minimizing rotational drift and the degree of uncertainty by
integrating a bespoke descriptor. Moreover, instead of defaulting
to the top-k strongest radar points as inputs, we have elected to
use feature points that were derived from the previous section.
With the uncertainty-minimized data, we derived n number of
surface point and normal pairs υ(n) = (p(n), η(n)). Pointwise
scan registration is conducted by minimizing the point-to-point

Fig. 4. (a) In our dataset, certain regions remain un-updated due to the low
update rate. An accumulation in these overlapping areas could lead to unexpected
convergence behaviors. (b) Given that radar imagery inherently constitutes
scan-rotated images, there exists a discrepancy between the commencement
and conclusion of the scans, primarily attributed to temporal lags. This discrep-
ancy is especially pronounced during sharp rotational movements. (c) Initially,
we delineate the contour, subsequently identifying proximal points to ensure
consideration extends to the wide area.

error function. For a and b satisfying the condition [υi(a) ∈
υi, υi+1(b) ∈ υi+1], we defined error function as (5).

ε(υi(a), υi+1(b),T
i+1
i ) = ‖pi+1(b)− (Ri+1

i pi(a) + τ i+1
i )‖2

(5)
To find the optimal transformation T = [R, τ ] with rota-

tion R and translation τ , we adopted Cauchy loss function
L(ε) = log(1 + ε2) based argument. The Cauchy loss function
exhibits a logarithmic escalation with residuals, thereby demon-
strating enhanced resilience to outliers compared to alternative
loss functions. This attribute is particularly suitable for radar
point cloud processing. To enhance the reliability of the model,
we incorporated a similarity weight α, calculated from the pair
v as described in [3].

f(υi, υi+1,T
i+1
i ) =

∑
∀a,b

αL(ε) =
∑
∀a,b

α log(1 + ε2) (6)

[Δx,Δy, θPi
] = argmin

x,y,θ
f(υi, υi+1,T

i+1
i ) (7)

Upon optimization, the transformation matrix was ascertained
by minimizing the discrepancy between the two point cloud sets.
The consequent alterations in rotation can be symbolized as the
sum of two angles, Δθi = θLi

+ θPi
.
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TABLE I
RADAR DATASET ATTRIBUTES

Fig. 5. For the given dataset, a cursory classification of the routes can be made
as follows: Pohang-b,c and Ulsan01,02 represent more straightforward
routes. In contrast, Pohang-d and Ulsan03 pose greater challenges for
odometry estimation.

IV. EXPERIMENT

A. Evaluation Environment Configuration

1) Maritime Radar Datasets: Given the unique environmen-
tal characteristics, there are few publicly available open datasets
for maritime odometry estimation. In order to execute and vali-
date our algorithm, we utilized two datasets, the Pohang Canal
Dataset [20] and our proprietary dataset (denoted as Ulsan). The
Pohang Canal Dataset offers 0.77 Hz to 1 Hz full Cartesian radar
image data, devoid of overlapping regions. On the other hand,
our dataset provides 1 Hz full Cartesian radar image data, but
with overlapping radar scans. The experimental procedure was
executed in an offline environment; however, the feasibility of
online implementation is assured owing to the low frequency
of sensor data acquisition. Detailed numerical characteristics of
both datasets have been tabulated and can be found in Table I.

We obtained the dataset in a port environment, with the
marine radar and LiDAR equipped vessel. In our dataset, radar
imagery is distinguished by incorporating radar scans at a higher
frequency than the Pohang canal dataset. This results in the pro-
duction of superimposed radar images. As illustrated in Fig. 5,
the right panel portrays the rudimentary trajectories associated
with our dataset. Specifically, Ulsan01 and Ulsan03 initiate
from the inner port vicinity, proceeding towards the external
port regions. Ulsan01 encompasses a trajectory with a modest
curvature, whereas Ulsan03 manifests a steep turn, suscep-
tible to causing disruptions in rotational tracking. Conversely,
Ulsan02 originates from the outer port domain, navigating
linearly into the inner port.

The Pohang Canal Dataset [20] is delineated into four
distinct regions, each assigned a unique numerical identifier:
a-Narrow canal area, b-Inner port area, c-Outer port area,

and d-Near-coastal area. Due to unstable radar data within
the narrow canal region, segments labeled Pohang-a were
excluded from the evaluation process. Additionally, in light of
the absence of GPS data for Pohang01-c, this segment was
not subjected to assessment. Consequently, our algorithm was
scrutinized across five datasets, specifically Pohang00-b,
Pohang00-c, Pohang00-d, Pohang01-b, and
Pohang01-d. Pohang sequences facilitated observing the
algorithm’s performance across linear, curved, and near-coastal
trajectories.

2) Evaluation Criteria: We compared our devised algorithm
with contemporarily advanced methodologies that have been
published recently. For conducting an in-depth comparison with
LiDAR-based odometry operating within a marine environment,
we have opted for two distinct LiDAR odometry estimation
procedures [21], [22]. As for the radar odometry, we have incor-
porated representative techniques for both metric and learning-
based sparse estimation [3], [6], given the absence of a publicly
available open-source resource for dense estimation. In the main
result Table II, we delineate the influence of our marine-specific
features; Contour and k-nearest on the existing SOTA, CFEAR.
Then, we illuminate the outcomes yielded by our comprehensive
algorithm. Taking into account the characteristics of each dataset
to be described in Section IV-C2, we present the odometry results
with variable k=10 for the Ulsan sequence and k=50 for the
Pohang sequence. The application of translational/rotational ab-
solute pose error (APE) has been utilized to gauge the trajectory
outcomes, the highlighted in bold represent the optimal results.
The subsequent Section IV-C provides a meticulous examination
of our results, which differ based on varying configurations.

B. Qualitative Performance

Fig. 6(a) and (b) present trajectory estimation results for
multiple odometry estimation techniques applied to Ulsan03
and Pohang01-d, representing a challenging route. Due to the
ineffectiveness of the LiDAR data in Pohang01-d, only the
Ulsan03 was utilized for LiDAR-based methods. The figure
reveals that while robust and reliable techniques for LiDAR
and Radar may be valuable in on-ground contexts, they are not
directly transferable to maritime radar applications. Only the
trajectories obtained from the marine feature and descriptor-
aided methods demonstrate an approximate course tendency
aligned with the ground truth. The discrepancies observed in
other methods can be attributed to the inherent challenges of
marine navigation, specifically the steep turns and scarcity of
consistent features. To provide a focused examination of the
proposed method’s efficacy without disrupters, trajectories were
plotted exclusively for the marine feature-only method and the
full proposed algorithm to yield the final results.

1) Ulsan Sequence: Our algorithm produces a significant
enhancement in odometry estimation by exploiting the rotation
compensation. Incorporating the Marine feature into CFEAR
yielded a moderate improvement for Ulsan01 and Ulsan02.
Nonetheless, addressing the sharp rotation in Ulsan03 solely
with the marine features proved a formidable challenge. The
employment of our maritime place descriptor efficaciously rec-
tified the rotation error, subsequently leading to a decrease in
translational error. The pointcloud map, constructed using the
estimated odometry, is illustrated in Fig. 6(c). This representa-
tion accurately captures the surrounding maritime environment.
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TABLE II
TRANSLATIONAL AND ROTATIONAL ABSOLUTE POSE ERROR FOR MARITIME RADAR AND LIDAR ODOMETRY (TRANS(M)/ROT(DEG))

Fig. 6. (a) and (b) are the evaluation of odometry estimation techniques in maritime environments. General odometry estimation techniques often fail to generate an
accurate trajectory. When the proposed marine feature was incorporated into CFEAR, the system demonstrated improved, albeit approximate, tracking capabilities.
Notably, the inclusion of the LodeStar descriptor was able to provide a precise solution for maritime odometry. A detailed comparative analysis is presented in
(d) and (e), results before and after the deployment of the descriptor.

2) Pohang Sequence: The outcomes from the Pohang Canal
Dataset are illustrated in Fig. 7 and also enumerated in Table II.
The radar images within the Pohang sequence exhibit complete
rotation, devoid of any overlapping regions. As such, imple-
menting our overlap data elimination procedure was deemed
unnecessary for this dataset. Our approach for the Pohang data
was streamlined, relying solely on contour extraction, k-nearest
points, and LodeStar descriptor. Since our descriptor predomi-
nantly ameliorates rotational errors, its impact on linear areas,
such as Pohang-b, and shorter passages like Pohang-c,
is relatively subdued. In contrast, a pronounced improvement
is evident within the more challenging region of Pohang-
d. The near-coastal area, being inherently sparse in features,
poses significant challenges for both detection and tracking.
Nevertheless, our methodology adeptly navigates these extreme

conditions, leading to a recalibrated and refined odometry
estimation.

C. Performance of Individual Factors

For the generality of the algorithm, the result shown in Ta-
ble II utilized all the marine feature components and Lodestar
descriptor. However, the feature extraction method exhibits po-
tential dataset dependency. In Tables III and IV, we illustrated
the distinct implications of each phase within our algorithmic
approach. An exploration into the interrelationships among the
feature factors was demonstrated in Fig. 9. We conducted an
in-depth comparison across the outcomes derived from each type
of the datasets, subsequently integrating our distinct descriptor
into every algorithmic variant.
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Fig. 7. Point cloud mapping outcomes for radar (blue) and LiDAR (yellow) in the Pohang sequence are presented in the center. As evidenced in the left figure,
the radar provides a rich set of points, while the LiDAR offers limited information in maritime settings. This paucity of LiDAR detections leads to mapping
inaccuracies in expansive maritime regions. Conversely, radar data is sparse in narrow canal regions such as Pohang-a, making it challenging to generate reliable
odometry solely using radar.

TABLE III
EFFECTS OF CONTOUR IN LINEAR AND DENSE DATASET

TABLE IV
k-NEAREST FEATURE IN CURVED AND SPARSE DATASET

1) Contour Extraction in Dense Dataset: Contour extraction
gains significance when noise emanates from the coastal surface
area. Yet, steep curvature and point cloud sparsity can lead to
erroneous matches, as evidenced by Ulsan03 and Pohang-d
in Table II. Our validation, as presented in Table III, underscores
the efficacy of contour extraction in dense datasets with linear
characteristics. While the contour extraction in sparse datasets
might lead to omitting valuable features, it can markedly aug-
ment robustness when generating accurate coastal contours.

2) k-Nearest Candidates in Sparse Dataset: Across all
datasets, the incorporation of k-nearest candidates markedly
improved accuracy as depicted in Table II. Moreover, Table III
and IV demonstrate a complementary relationship with LodeStar
descriptor. Particularly in sparse datasets, k-nearest points pre-
serve the scene’s context, facilitating the tracking of approximate
trajectories.

Additionally, we evaluated the outcomes resulting from mod-
ifications in the quantity of nearest points. Considering that
the radar image possesses a resolution of 2.71 m/pixel, APE
values are nearly uniform across generic instances. However,
the results for the inner port zone within the Pohang sequences
(Pohang00-b, Pohang01-b) illustrating a discernible de-
cline in accuracy as the number of points amplifies. Such findings
underscore the necessity for a sufficient quantity of nearest

TABLE V
RESULTS FOR MODIFICATIONS IN THE k-NEAREST POINTS

points in regions characterized by intricate and a strong radar
signals. Contrarily, Ulsan03 yielded superior outcomes with a
diminished point numbers. These observations substantiate the
premise that the exclusion of certain points can be beneficial in
complex but expansive areas. To clarify, a larger value of k is
beneficial in areas with complex environments and strong radar
signals, whereas a smaller value is appropriate in regions that
are sparse and have weak radar signals. Details are written in
Table V, and bolded figures support these results.

3) Overlap Elimination in Curved Dataset: Overlap elimi-
nation mitigates the impact of repeated scans, particularly those
arising from steep rotational movements. In linear trajectories,
the implications of overlap elimination are relatively inconse-
quential. Yet, as illustrated in Table IV, this refinement can mod-
estly reduce error rates. Notably, its integration with LodeStar
descriptor results in significant performance enhancements. This
particular behavior is evident in Fig. 8. Without the imple-
mentation of overlap elimination, the estimation experiences
significant error drift, particularly in areas of rotation. However,
following the removal of overlapping regions, it becomes feasi-
ble to achieve near ground-truth level accuracy in estimating the
vessel’s rotation, even when relying solely on LodeStar-based
estimations.

4) LodeStar Descriptor Performance: The results are pre-
sented both prior to and subsequent to the application of the
descriptor for each feature methodology in Tables III and IV.
As illustrated in Fig. 6, the vessel’s acute maneuvering signifi-
cantly impacts odometry tracking. Nevertheless, our descriptor
effectively addresses all instances of rotational discrepancies.
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Fig. 8. Rotation estimation only with the LodeStar in the Ulsan03 sequence,
highlighting significant rotational drifts near frames 40 and 210. In the absence
of overlap elimination, rotation estimation is vulnerable, and accumulated
angles demonstrate substantial errors. However, with the integration of overlap
elimination, producing precise angle estimation results becomes feasible.

Fig. 9. The left depicts the k-nearest points without contour extraction,
whereas the right illustrates the post-contour extraction. For the significant values
of k, both cases yield precise point normal values. As the number of points re-
duces, deriving accurate point normals becomes challenging, leading to potential
matching discrepancies. However, the point cloud augmented with contour de-
tails facilitates the computation of point normals even with a reduced point count.

The diminutive rotation angle variance, such as linear or mini-
mal curvature routes, renders the descriptor’s function inconse-
quential. The intricacy of the trajectory directly influences the
outcomes, with increasing complexity bolstering the efficacy of
our descriptor. As delineated in Fig. 8, we have validated the
robustness of our descriptor under challenging environmental
conditions.

V. CONCLUSION

This letter introduced a novel maritime radar descriptor that
significantly diminishes odometry errors. Our investigation into
the marine environment context utilized three distinct feature
extraction methodologies, further aiding in the enhancement of
the odometry outcomes. Particularly for sharp turning routes, our
descriptor is indispensable for accurately tracking and predicting
the vessel’s trajectory. In spite of the advancements made, minor
challenges remain. The absence of a pointcloud results in unsuc-
cessful matching and tracking. Conversely, a reduced quantity
of k-nearest points augments accuracy during acute turning.
Determining the optimal parameter or applying the methods
such as contour extraction is imperative. As prospects, we aim
to integrate our odometry estimation approach with place recog-
nition techniques to implement a SLAM using marine radar.
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