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Abstract
The integration of sensor data is crucial in the field of robotics to take full advantage of the various sensors employed. One
critical aspect of this integration is determining the extrinsic calibrationparameters, such as the relative transformation, between
each sensor. The use of data fusion between complementary sensors, such as radar and LiDAR, can provide significant benefits,
particularly in harsh environments where accurate depth data is required. However, noise included in radar sensor data can
make the estimation of extrinsic calibration challenging. To address this issue, we present a novel framework for the extrinsic
calibration of radar and LiDAR sensors, utilizing CycleGAN as amethod of image-to-image translation. Our proposedmethod
employs translating radar bird-eye-view images into LiDAR-style images to estimate the 3-DOF extrinsic parameters. The
use of image registration techniques, as well as deskewing based on sensor odometry and B-spline interpolation, is employed
to address the rolling shutter effect commonly present in spinning sensors. Our method demonstrates a notable improvement
in extrinsic calibration compared to filter-based methods using the MulRan dataset.

Keywords LiDAR · Radar · Image translation · Extrinsic calibration

1 Introduction

As the field of autonomous driving technology evolves, the
significance of sensors that perceive the driving environ-
ment increases. In recent times, cameras, LiDAR, and radar
sensors have gained widespread adoption in autonomous
vehicles. In contrast to traditional vision-based sensors,
range-based sensors provide information based on the dis-
tance to the objects. LiDAR sensors provide dense 3D laser
information in clear weather conditions, while radar sensors
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furnish approximate point cloud data for the surrounding
environment. Due to the nature of the radio waves employed
by radar sensors, the quality of data provided by radar sen-
sors is superior to that of LiDAR sensors in adverse weather
conditions. Therefore, it is essential to integrate data from
both sensors and determine their relationship, referred to as
extrinsic calibration, to leverage the benefits of both sensors
in vision-degrading conditions fully.

Extensive research has been conducted on extrinsic cal-
ibration for both homogeneous sensor combinations [1, 2],
and heterogeneous sensor combinations [3–5]. One method
of extrinsic calibration is the model-based approach, which
aims to optimize a cost function based on a specific target,
such as circle-based targets [6], plane fitting [7], and repro-
jection error [4]. However, the accurate correspondence of
data from two sensors is required to perform calibration in
this manner, which can be challenging for spinning range
sensors due to the rolling shutter effect. This effect occurs
when data is acquiredwhile the system is inmotion, resulting
in sensors providing measurements of point locations closer
or farther than the actual distance from the points. This dis-
tance error can cause the same point in the acquired data
to appear in different areas, leading to errors when attempt-
ing to establish correspondence. To address this challenge,

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11370-023-00498-y&domain=pdf
http://orcid.org/0000-0003-0187-006X
http://orcid.org/0000-0003-4745-9639
http://orcid.org/0000-0002-5623-6288
http://orcid.org/0000-0001-9829-2408
http://orcid.org/0000-0003-3611-0298


168 Intelligent Service Robotics (2024) 17:167–179

pre-processing LiDAR and radar pointcloud data is neces-
sary to enable precise extrinsic calibration. In this paper, we
reduce the motion distortion by utilizing inertial measure-
ment unit (IMU)-preintegration [8], a technique primarily
used in simultaneous localization and mapping (SLAM).

In addition to the challenges posed by the rolling shut-
ter effect, the use of radio waves by radar sensors also
leads to significant measurement variations depending on the
medium’s reflective properties. These characteristics result
in measurement data that is heavily contaminated by noise.
This paper employs an image-to-image translationmethod to
transform radar images into LiDAR-style images with lower
noise levels. To achieve this, we exploit CycleGAN [9] as the
image-to-image translation method, which does not require
paired images for the training period.

In this study, we present a novel pipeline for the extrinsic
calibration between radar andLiDARsensors,which is based
on the translation of radar images into LiDAR-style images
using CycleGAN [9]. Additionally, we address the chal-
lenge of motion distortion by utilizing inertial measurement
unit (IMU)-preintegration [8] to achieve accurate correspon-
dences between the two measurements. Finally, we estimate
the 3-degree-of-freedom (DOF) extrinsic parameters using
mutual information. The overview of our method is given in
Fig. 1 while its contributions are as follows:

1. We propose a novel framework utilizing CycleGAN-
based image-to-image translation for estimating3-degree-
of-freedom (DOF) extrinsic parameters between radar
and LiDAR sensors.

2. We address the challenge of motion distortion by incor-
porating the use of IMU-preintegration [8] to enhance
the accuracy of 3-DOF extrinsic parameter estimation
for heterogeneous sensors which operate at different fre-
quencies.

3. We demonstrate the significant improvement in the
performance of 3-DOF extrinsic parameter estimation
compared to filter-based methods through experimental
evaluation on the MulRan dataset [10].

2 Related works

2.1 Model-based sensor calibration

Sensor calibration is an essential process for multi-sensor
systems. Accurate extrinsic calibration is crucial for pre-
cise motion estimation, point cloud mapping, and sensor
fusion. Several camera calibration methods [1, 11–13] have
been developed for environment perception, highlighting the
importance of sensor calibration and the use of vision sen-
sors with geometrical calculations. While camera calibration
has played a foundational role in autonomous driving, the

need for sensors that provide depth information directly and
accurately has increased due to the limitations of cameras
that require additional geometry calculations for depth infor-
mation. With the growing importance of accurate ranging
sensors, studies on extrinsic calibration with LiDAR and
radar have gained attention. Fremont et al. [6] conducted
camera-LiDAR calibration using a circle-based target, while
Pusztai andHajder [3] proposed a camera-LiDARcalibration
method using a cardboard box. Jeong et al. [7] developed a
calibration method for non-overlapping stereo cameras and
LiDAR that leverages static and robust road information.
The method includes informative image selection, optimiza-
tion under edge alignment, plane fitting cost, and normalized
information distance.

In the context of LiDAR-only calibration,Muhammad and
Lacroix [2] proposed a method for geometrical calibration of
a 64-ray LiDAR sensor. Additionally, Atanacio-Jiménez et
al. [14] proposed a LiDAR calibration method that utilizes
pattern planes, which includes a mathematical model and
numerical algorithm for minimizing systematic error in an
outdoor environment. Furthermore, Jiao et al. [15] proposed
a method for calibrating dual LiDAR sensors that leverages
plane extraction and matching. Recently, Das et al. [16] pro-
posed a multi-LiDAR extrinsic calibration algorithm that
can be utilized with LiDAR system whose LiDAR field of
view FOVs are non-overlapping by exploiting SLAM algo-
rithm and LiDAR semantic features to give correspondences
between the LiDAR sensors with different sights.

For radar sensors, Peršsić et al. [4] and Domhof et al. [5]
proposed methods for the calibration of camera–LiDAR–
radar sensor systems. Peršsić et al. [4] proposed a special
target for data accumulation that includes a two-step opti-
mization procedure,with the first step being theminimization
of reprojection error, and the second step being the refine-
ment of high uncertainty parameter subsets. Domhof et
al. [5] developed a tool for the camera–LiDAR–radar cal-
ibration that provides joint extrinsic calibration results for
the three sensors and utilizes a unique target with a tri-
hedral corner reflector. Zhang et al. [17] have proposed
3DRadar2ThermalCalib recently, which aims at extrinsic
calibration between a 3DmmWave radar and a thermal cam-
era, utilizing a spherical–trihedral target, encouraging the
thermal–radar fusion SLAM works.

Previous studies on multi-modal calibration have relied
on using special targets or robust common features, which
are not always assumed to be existing around the sen-
sors. In contrast, we propose a novel method for estimating
the 3-DOF extrinsic parameters between LiDAR and imag-
ing radar without needing any special targets or robust
features.
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Fig. 1 The images on the left depict LiDAR and radar bird-eye-view
images. Before the CycleGAN-based image conversion (indicated by
the red box), distortion removal (indicated by the blue box) is applied
to both images. The lower middle image illustrates the result of the
CycleGAN-based conversion, which produces a LiDAR-style image
with LiDAR data characteristics. Next, 3-DOF extrinsic parameter esti-

mation is conducted using both the original LiDAR image and the
generated LiDAR-style image. The lower right image displays the
outcomeof the alignment,where the original LiDAR image andLiDAR-
style radar images are depicted in pink and green, respectively (color
figure online)

2.2 Learning-based sensor calibration

Due to the rapid growth in the field of deep learning, the field
of computer vision has achieved great success. As one of the
most important topics in computer vision is extrinsic calibra-
tion, the application of deep learning on extrinsic calibration
also made significant development. PoseNet [18] utilized
convolutional neural network (CNN) on camera pose regres-
sion, including location and orientation. Inspired by PoseNet
[18], RegNet [19] utilized CNN to solve three conventional
calibration steps (feature extraction, feature matching, and
global regression) for the extrinsic parameter calibration of
multi-modal sensors. CalibNet [20] applied ResNet network
structure on the architecture of RegNet [19] while exploit-
ing a self-supervised network, which includes photometric
loss and pointcloud loss. Schöller et al. [21] introduced
auto-calibration for radar and camera, utilizing CNN-based
method to conduct calibration without specific target. Fur-
thermore, a boosting-inspired training algorithm is utilized
for robustness.

Meanwhile, as the deformation of the hardware model
can affect the long-term accuracy performance of multi-
sensor systems, the online calibration method’s importance
has grown. To achieve higher accuracy of online calibration
formultiple heterogeneous sensors,Yuanet al. [22] andWang
et al. [23] proposed RGGNet and SOIC that provide online

calibration of camera and LiDAR. RGGNet [22] focused on
utilizing a deep generativemodel for online calibration,while
SOIC [23] utilized semantic centroid to solve the calibration
problem as a PnP problem. Furthermore, CalibRCNN [24]
calculated 6-DOF transformation between 3D LiDAR and
2D camera in real-time by utilizing the LSTM network to
extract features and managed both geometric loss and photo-
metric loss to refine the calibration accuracy. Recently, Duy
andYoo [25] proposedCalibration-Net,which provides auto-
calibration between LiDAR and camera using cost volume
and Convolutional Neural Network, suggesting the possibil-
ity of extrinsic calibration between range sensors using depth
information.

Deep-learning-based methodologies are one of the prac-
tical solutions for the calibration problem between heteroge-
neous sensors due to their robustness about unpredictable
noise that is produced from typical range sensors while
acquiring data. Although deep-learning-based extrinsic cal-
ibration methods have shown reasonable results based on
CNN and RNN networks, two major limitations remain.
First, every method targets the extrinsic calibration between
the camera and range sensor while using multiple range
sensors is emerging. The second limitation is that most of
the methods used the KITTI [26] dataset for the train and
test dataset, which provides ideally time-synchronized data
that can be used as pairs of data for training. If the input
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data for training are not time synchronized, the result data
from other methods will show less quality compared with
our method. Unlike existing methods, we propose a LiDAR-
radar 3-DOF extrinsic parameter estimation method based
on the CycleGAN metric that provides generators that are
learned between two different image domains to guarantee
cycle consistency, being robust to datasets with unsynchro-
nized images.

2.3 Generative Adversarial Networks (GANs)-based
image translation

In recent years, the application of deep learning in computer
vision has led to significant advancements, particularly in
extrinsic calibration. One notable development is the use of
GANs for style transfer, which aims to maintain the content
of an image while altering its style. The pix2pix model, pro-
posed by Isola et al. [27], utilized conditional GANs to learn
a mapping between input and output images. However, this
method requires a paired dataset for training. On the other
hand, the CycleGANmodel proposed by Zhu et al. [9] allows
for image-to-image translation tasks without the need for
paired data. By introducing cycle consistency losses, Cycle-
GAN learns amapping between a source and target domain in
both directions. Other methods, such as DiscoGAN [28] and
DualGAN [29], also utilize unpaired data with unsupervised
learning but differ in the loss function used. In this work, we
utilize the CycleGAN model as a basis for image-to-image
translation between radar and LiDAR images due to its abil-
ity to work with unpaired data and its verified compatibility
with the number of reproduction cases on GitHub.

3 Methodology

The proposed method is illustrated in Fig. 2. The first step
of our approach is to preprocess the radar images using tra-
jectory data obtained from SLAM methods to correct for
motion distortion caused by the spinning nature of radar
sensors. Next, we apply a CycleGAN-based image-to-image
translation method to convert the radar images into LiDAR-
style images with reduced noise levels. Finally, we perform
extrinsic calibration between the LiDAR and radar sensors
by aligning the LiDAR-style radar images with the real
LiDAR data using mutual information (MI)-based registra-
tionmethod andphase correlation-based registrationmethod.

3.1 Forward propagation from polar to Cartesian

In the pre-processing stage, we convert radar images from
polar coordinates to Cartesian coordinates. Specifically, a
radar polar image I PR is transformed into a radar Cartesian
image I CR . Two methods are utilized for this transformation

process: forward propagation and backward propagation. As
shown in Fig. 3, there is a distinct difference between the
images generated by these two methods. With forward prop-
agation, points from the polar image are transformed through
a one-to-one correspondence, resulting in a sparser Cartesian
image as the distance of the point from the center increases.
Conversely, backward propagation employs a one-to-many
correspondence, yielding a denser image but with higher
noise. In this study, we utilize forward propagation for image
conversion, as the high noise levels associatedwith backward
propagation may lead to inaccurate 3-DOF extrinsic param-
eter estimation.

3.2 Motion distortion of spinning sensors

As both LiDAR and imaging radar are spinning sensors
which acquire a single scene with a rotating module inside
the sensor, the position of every point acquired from the sen-
sor is distorted because the full system is moving while the
scene is getting acquired. This motion distortion should be
handled before the 3-DOF extrinsic parameter estimation.

3.2.1 Motion distortion removal

Before estimating the 3-DOF extrinsic parameter, the trajec-
tory of each sensor can be achieved by SLAMalgorithms.We
exploit the radar odometry [30] and LiDAR odometry [31] to
achieve trajectory of each sensor separately. Additionally, by
utilizing high-frequency sensors such as an IMU, the rolling
shutter effect can be handled with a high degree of accuracy
as the IMU-preintegration can provide the position of the
sensor between each SLAM trajectory position.

To correct for any distortions caused bymotion, it is essen-
tial to merge the points obtained at different time intervals
into a single frame. We define the reference frame as the
frame where each sensor starts acquiring data, while the
frame containing each point is referred to as the point frame.
Motion distortion can be corrected by determining the trans-
formation between these two frames. However, even with
dense trajectories with IMU-preintegration [8], obtaining a
perfectly accurate transformation corresponding to the point
frames of all points is challenging due to the IMU cannot
provide data at the exact time for every single point because
of time synchronization problem between IMU sensor and
each ranging sensor. Therefore, based on the estimated tra-
jectory with IMU-preintegration [8], we perform B-spline
interpolation [32] to obtain TS

j ∈ SE(3) at a specific time
t j . B-spline curve is an interpolation algorithm that receives
several points as input and returns the interpolated point at
a specific time, whose performance with the range sensors
such as LiDAR has been proven as the [33]. With the four
nearest trajectory positions about the point in the axis of time,
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Fig. 2 This figure illustrates the comprehensive framework of our pro-
posed method. The green box denotes the input data, which is not
specified in detail. The blue box represents the data processing com-
ponent, further explained in Sect. 3.2. In Sect. 3.3, the radar image is

transformed into a LiDAR-style image using the CycleGAN-based net-
work, as represented by the red box. Finally, the translated radar and
original LiDAR images are utilized to estimate the 3-DOF extrinsic
parameters through the purple box (color figure online)

Fig. 3 a, b The transformed
radar Cartesian image from the
original polar image. An image
produced by forward
propagation includes fewer
pixels but less noise than that
produced by backward
propagation

Fig. 4 a presents the original
radar image, with a yellow line
indicating the scan baseline and
rotation direction. Due to the
effect of motion distortion, the
beginning and end of the scan
are not clearly matched. In
contrast, b demonstrates the
deskewed image, in which
pixels are registered in their
proper location as a result of
motion distortion elimination.
The improvement in alignment
can be observed through the
improved correspondence of
orange and blue points, which
were acquired at the beginning
and end of one scan period,
respectively (color figure online)
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B-spline interpolation can provide the interpolated position
TS

j .

Finally, refined position of 3D points pDj based on the
B-spline interpolation are calculated as

pDj =
{
TS
i

}−1
TS

j p j (1)

where i is the time when the data acquire is first started and
j is the time when the point is acquired. TS

i is position of the
system at time i provided from the SLAM trajectory while
TS

j is position of the system at time j calculated with the
B-spline interpolation and IMU-preintegration.

3.2.2 LiDAR sensor

In the case of LiDAR, motion distortion is removed from the
3D point cloud through the method outlined in Sect. 3.2.1.
The resulting point clouds are then transformed into bird-
eye-view images with a pixel size of p and image size of r ,
representing half of the maximum distance.

3.2.3 Imaging radar sensor

For the Imaging radar, since the transformed Cartesian radar
images are in 2D, we convert these images into a point cloud
PR , where each point pR, j is located in the coordinate space
[Ix , Iy, 0] while Ix and Iy refers the position of the point in
x-axis and y-axis. We then remove motion distortion through
the method outlined in Sect. 3.2.1. The resulting point clouds
are subsequently transformed into bird-eye-view imageswith
a pixel size of p and image size of r , representing half of the
maximum distance.

Figure4a, b indicates before and after the motion distor-
tion, showing that points from starting and ending of one
sweep do not match if the motion distortion is not removed.

3.3 Radar to LiDAR image translation

After removing motion distortion, the bird-eye-view LiDAR
and radar images are ready for further processing. Due to the
radar image and LiDAR image differences in the noise level
and data characteristics, direct image registration is unwork-
able. To address this issue before the image registration
process, image translation of radar image into a LiDAR-
style image is necessary. The style transfer algorithm, which
does not require the perfectly paired dataset, is needed as
the exact paired image between radar and LiDAR cannot be
provided. To achieve this, we utilize the CycleGAN architec-
ture [9], which does not require a paired dataset for training.
The network is trained on bird-eye-view radar images and
corresponding LiDAR images.

In the CycleGAN model, there are two generator func-
tions, GX : X −→ Y and GY : Y −→ X . Both generators
translate images between the X and Y domains, while the
X domain includes radar images and the Y domain includes
LiDAR images. As such, separate discriminators are used
for each generated result: DX and DY . DX discriminates
whether the input image belongs to the X domain, and DY

performs a similar task for the Y domain.
Similar to normal GANs network’s loss functions, Cycle-

GAN includes adversarial loss for generators and discrimina-
tors. Due to the generators and discriminators being paired,
there are two different adversarial loss functions:

LGAN (G, DY , X ,Y ) = Ey∈Y
[
log DY (y)

]

+ Ex∈X
[
log (1-DY (G (x)))

]
(2)

LGAN (F, DX , X ,Y ) = Ex∈X
[
log DX (x)

]

+ Ey∈Y
[
log (1-DX (F (y)))

]
(3)

Although the adversarial loss can train the network to
generate reasonable images, which should be included in
domains X and Y, the cycle consistency cannot be trained
from the basic adversarial loss. To guarantee that the out-
put of mapped images is included in the target domain, the
image that has passed both generators should still include
the characteristics of the original domain. For our goal, the
LiDAR-styled radar image should be included in the radar
domain when it goes through the translation of the genera-
tor that maps the LiDAR image to the radar image. For this,
CycleGAN uses cycle consistency loss:

Lcyc (G, F) = Ex∈X [||F (G (x)) − x ||1]
+ Ey∈Y [||G (F (y)) − y||1] (4)

Using the L1 norm, the reconstructed image through two
generators is compared with the original image to calculate
the cycle consistency loss. This loss function helps to guar-
antee that the generated LiDAR-style bird-eye-view image
would include enough characteristics of the original LiDAR
bird-eye-view image.

As the major goal of CycleGAN’s generator is to pre-
serve the input image’s characteristic of the target domain
and delete the original domain’s characteristic, the mapped
result ofG (y) should not change as the input image is already
included in the target domain. Therefore, identity loss is also
used for CycleGAN, and its equation is like this:

Lidentity (G, F) = Ey∈Y [||G (y) − y||1]
+ Ex∈X [||F (x) − x ||1] (5)

This identity losswould help the trained network to remain
the style of LiDAR included in the original radar image.
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Fig. 5 Due to the point sparsity,
feature-based methods are not
able to register LiDAR images
to radar images. As the right
image, translated radar images
with feature extraction methods
include less points than the
original images. Low
correspondences between
LiDAR image and both radar
and translated radar image are
shown

3.4 Image registration

In order to estimate the extrinsic parameters between the
Imaging radar and LiDAR, we utilize image registration
methods. Given that both radar and LiDAR images possess
sparse point clouds, traditional feature-based registration
methodsmay not be effective due to the low correspondences
between the images, as demonstrated in Fig. 5. Therefore, we
employ two direct registration methods. By assuming that
only a rigid transformation exists between the two bird-eye-
view images, we adopt a phase correlation-based method,
which can compute fast and accurate results compared to
brute-force matching methods. The cross-correlation value
between the two images can be represented mathematically
as

1

n

∑
x,y

f (x, y)t(x, y). (6)

while f , t are the original and target image signals. In
this paper, we adopt intensity as the metric for quantify-
ing image signals, represented by f and t for the original
and target images, respectively. The extrinsic parameters are
derived from the peak signal that establishes the correlation
between the two images. MI-based approach is employed to
attain accurate registration results. However, due to the high
computational complexity of the MI-based approach as an
optimization process, it is utilized for verifying registration
accuracy and not for real-time 3-DOF extrinsic parameter
estimation.

4 Experimental results and discussion

In this section, a thorough explanation of the experimen-
tal settings and associated results is provided. The quality

of the translated radar images and their registration results
with LiDAR images are evaluated and compared with those
obtained from the filtered radar images.

4.1 Experimental setup

KAIST sequences in the MulRan dataset[10] were utilized
for experiments. TheMulRandataset is a dataset that includes
multi-modal range sensor data such as radar andLiDAR. Fur-
thermore, IMU sensor data and GPS data are provided from
the dataset, making the dataset suitable for the evaluation of
methodology. Because the KAIST sequence was acquired at
the college campus, the data include many dynamic objects,
such as students on the sidewalk or other cars running on
the driveways.KAIST_0620 andKAIST_0823 datasetswere
employed for training, and theKAIST_0902datasetwas used
to evaluate 3-DOF extrinsic parameter estimation. Both the
training and testing datasets were scaled to a size of 300×300
pixels,with each image representing a range of 150m×150m,
equivalent to 0.5m per pixel. The training dataset consists
of 3000 LiDAR and radar bird-eye-view images randomly
selected from the KAIST_0620 and KAIST_0823 datasets,
with 1500 images from each sequence. Image pairs with an
acquisition time difference less than tmax were utilized to
ensure accurate extrinsic parameter estimation.

We adopt the generative network architecture fromCycle-
GAN as described in [9]. The architecture consists of three
convolution layers, nine residual blocks as described in
[34], two fractionally strided convolutions with 1

2 stride, and
one last convolution layer. Instance normalization [35] was
employed with the convolutional layers. To be more spe-
cific about the CycleGAN generator, let c7s1 − k be a 7×7
Convolution-InstanceNorm-ReLU layer with k filters and
stride of 1. Furthermore, dk denotes a 3×3 Convolution-
InstanceNorm-ReLU layer with k filters, including a stride
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Table 1 Detailed architecture of the CycleGAN generator

No Name Layer (type) Output Shape Parameters

1 c7s1 − 64 7×7 Convolution-InstanceNorm-ReLU with 64 filters [-1, 64, 256, 256] 3200

2 d128 3×3 Convolution-InstanceNorm-ReLU with 128 filters [-1, 128, 128, 128] 73,856

3 d256 3×3 Convolution-InstanceNorm-ReLU with 256 filters [-1, 64, 256, 256] 295,168

4 R256 ResidualBlock with two 3×3 Convolutions-InstanceNorm-ReLU [-1, 64, 256, 256] 1,180,160

5 R256 ResidualBlock with two 3×3 Convolutions-InstanceNorm-ReLU [-1, 64, 256, 256] 1,180,160

6 R256 ResidualBlock with two 3×3 Convolutions-InstanceNorm-ReLU [-1, 64, 256, 256] 1,180,160

7 R256 ResidualBlock with two 3×3 Convolutions-InstanceNorm-ReLU [-1, 64, 256, 256] 1,180,160

8 R256 ResidualBlock with two 3×3 Convolutions-InstanceNorm-ReLU [-1, 64, 256, 256] 1,180,160

9 R256 ResidualBlock with two 3×3 Convolutions-InstanceNorm-ReLU [-1, 64, 256, 256] 1,180,160

10 R256 ResidualBlock with two 3×3 Convolutions-InstanceNorm-ReLU [-1, 64, 256, 256] 1,180,160

11 R256 ResidualBlock with two 3×3 Convolutions-InstanceNorm-ReLU [-1, 64, 256, 256] 1,180,160

12 R256 ResidualBlock with two 3×3 Convolutions-InstanceNorm-ReLU [-1, 64, 256, 256] 1,180,160

13 u128 3×3 fractional-strided-Convolution-InstanceNorm-ReLU with 128 filters [-1, 128, 256, 256] 295,040

14 u64 3×3 fractional-strided-Convolution-InstanceNorm-ReLU with 64 filters [-1, 64, 256, 256] 73,792

15 c7s1 − 3 7×7 Convolution-InstanceNorm-ReLU with 3 filters [-1, 1, 256, 256] 3137

Table 2 Detailed architecture of the CycleGAN discriminator

No Name Layer (type) Output Shape Parameters

1 C64 4×4 Convolution-InstanceNorm-LeakyReLU with 64 filters [-1, 64, 128, 128] 1088

2 C128 4×4 Convolution-InstanceNorm-LeakyReLU with 128 filters [-1, 128, 64, 64] 131,200

3 C256 4×4 Convolution-InstanceNorm-LeakyReLU with 256 filters [-1, 128, 64, 64] 524,544

4 C512 4×4 Convolution-InstanceNorm-LeakyReLU with 512 filters [-1, 128, 64, 64] 2097664

of 2. Rk is a residual block containing two 3×3 convolutional
layers, including the same number of filters on both layers,
while uk represents a 3×3 fractional-strided-Convolution-
InstanceNorm-ReLU layer with k filters and stride of 1

2 . The
generator network that has been exploited is like follows:
c7s1 − 64, d128, d256, R256, R256, R256, R256, R256,
R256, R256, R256, R256, u128, u64, c7s1 − 3. A more
detailed description of the generator network is included in
Table 1.

70×70PatchGANs [27, 36, 37]were used for the discrim-
inator. For more details about the CycleGAN discriminator,
letCk denote a 4×4Convolution-InstanceNorm-LeakyReLU
layer with k filters and stride 2. To produce a scalar output
from the discriminator, convolution is applied. The slope of
0.2 was utilized with Leaky ReLUs, while the discriminator
architecture is as follows: C64–C128–C256–C512. A more
detailed description of the discriminator network is included
in Table 2.

We exploited 0.0002 as the initial learning rate, andHalf of
the iterations were run with the initial learning rate. Another
half of the iterations were run with a linear decay learning
rate of zero. The weight for cycle loss is 10.0, while identity
loss is set as 2. More specific explanations about the network

Table 3 Image quality analysis. The highest value is written in bold

PSNR SSIM

Original radar 14.4038 0.0346

Median-filtered radar 15.0587 0.0580

Gaussian-filtered radar 14.6781 0.0402

CNN-filtered radar 10.3528 0.0125

Translated radar (10 epoch) 24.0301 0.7319

Translated radar (15 epoch) 24.5550 0.7579

Translated radar (20 epoch) 24.3805 0.7606

Translated radar (25 epoch) 24.4076 0.7781

Translated radar (30 epoch) 24.6909 0.7831

Translated radar (35 epoch) 24.6760 0.7819

Translated radar (40 epoch) 24.4502 0.7829

structure are well explained in the CycleGAN original paper
[9].

4.2 Evaluation for translated radar image

In this section, we evaluate the quality of the translated radar
images generated using our method. This method aims to
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Fig. 6 Images with red
borderlines represent the
bird-eye-view radar images
generated in the Cartesian
coordinate system using
back-propagation.
Blue-bordered images depict the
bird-eye-view LiDAR images,
which possess more centered
and clean data. Images with
green border lines depict the
translated radar images
generated from the CycleGAN
network. These translated
images incorporate the data
from the radar sensor with
reduced noise levels. Most of
the ring and radial noise in the
red-bordered images is
eliminated in the green-bordered
images, resulting in a better
match with the LiDAR images,
as observed intuitively (color
figure online)

Radar Image

Translated
Radar Image

LiDAR Image

Table 4 Extrinsic Calibration
Distribution based on MI and
phase correlation

Mean (Extrinsic parameters) STD (Convergence rate)

30 epoch x [cm] y [cm] θ [rad] x [cm] y [cm] θ [rad]

CycleGAN-PH 4.4361 40.6015 −0.0133 17.5047 24.9289 0.1199

CycleGAN-MI −0.0357 56.6839 −0.0289 12.9081 22.4413 0.2232

CNN-MI −25.2390 13.5681 −0.0076 131.9820 125.7971 0.0775

Gaussian-MI −59.3272 43.3379 −0.0086 55.3282 58.8750 0.0095

Median-MI −63.6261 47.5538 −0.0093 54.1358 60.6015 0.0093

Original-MI −55.6915 39.8573 −0.0082 55.7864 56.8529 0.0097

Smallest standard deviations that leads to the highest convergence rate are expressed with bold numbers
Original: Original radar image, Median: Median-filtered radar image, Gaussian: Gaussian-filtered radar
image, CNN: CNN-filtered radar image, CycleGAN: CycleGAN-based translated radar image, MI: mutual
information, PH: phase correlation

translate the radar images into a LiDAR-style representa-
tion that captures the properties of LiDAR data. To evaluate
these translated radar images, we employ the peak signal-to-
noise ratio (PSNR) and structural similarity index measure
(SSIM), commonly usedmetrics for measuring the quality of
generated images. PSNRevaluates the information loss in the
generated image, while SSIM considers luminance, contrast,
and structural information. Both metrics have a higher value
as the quality of the generated image improves. As shown in
Table 3, the translated radar image at 30 epochs shows the
highest PSNR and SSIM values. The translated radar images
exhibit exceptional PSNR and SSIM values when compared
to the LiDAR images. Based on the definition of PSNR and
SSIM, we conclude that the CycleGAN-based image trans-
lation method generates images with similar noise levels and
characteristics to LiDAR images. Furthermore, to perform
the extrinsic calibration of radar and LiDAR, the translated
radar image must reflect the characteristics of LiDAR. How-
ever, filter-based methods are unsuitable as they are mainly

focused on reducing the noise level of the image and have
lower PSNR and SSIM values.

Qualitatively, the translated radar images, as shown in
Fig. 6, possess a higher degree of centralization of points
and a reduced level of ring and radial noise as compared to
the original radar images. These characteristics are similar
to those of LiDAR images.

4.3 Evaluation for image registration

As mentioned above, the translated radar images are regis-
tered on LiDAR images using MI and the phase correlation
method. The registered results are analyzed both qualitatively
and quantitatively to evaluate the performance of the pro-
posed method.

The accuracy of image registration results is evaluated by
applying two methods, MI and Phase Correlation, to trans-
lated radar images. The results are then presented in Table 4.
It is observed that the convergence rate of CycleGAN-based
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Fig. 7 a and b depict the registration results between the CycleGAN-
based translated images and LiDAR images using MI and phase
correlation, respectively. c, d, e, and f depict the registration results
of the original radar images and other filter-based radar images with

LiDAR images using MI. The points in the images represent the rela-
tive translation between the images. After the CycleGAN-based image
conversion, we obtained higher precision results than the other methods
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Fig. 8 The images in the two
left columns depict the best-case
scenario, where both the
original (green borderlines) and
translated radar images (blue
borderlines) are successfully
registered with the
corresponding LiDAR images.
However, most registration
cases involving the original
radar images failed, as
illustrated by the red borderline
images in the third column. In
contrast, the CycleGAN-based
transformed images in the fourth
column (with blue borderlines)
demonstrate robust registration
results using the same radar
data. In each image, the pink
points represent the LiDAR data
and the green points represent
the original radar data or the
transformed radar data (color
figure online)

Original Radar Translated Radar Original Radar Translated Radar

generated images is superior to that of filter-based translated
images, as evidenced by the low standard deviation values.
Additionally, given the sensor configuration of the MulRan
[10] dataset, where the radar andLiDAR sensors are arranged
in a row, it is found that theMI-based image registration with
the LiDAR-style image has achieved convergence to the cor-
rect value.

The registration results based on each method are further
illustrated in Fig. 7, which confirms the degree of conver-
gence of the image registration results. Figure7c, 7d, and 7e
demonstrates that the Median filter and Gaussian filter were
unsuccessful in removing a high level of noise from the input
radar image, as the scattered points retained similar shapes.

Figure7e illustrates the failure of the CNN filter to gener-
ate an appropriate LiDAR-style image from the input radar
image, as a majority of the points diverged by more than 5m.
Figure7b presents the results of the phase-correlation-based
image registration with the translated radar images, which
exhibit a more stable convergence than other filter-based
methods. The results ofMI-based image registration with the
translated radar images, as depicted in Fig. 7b, demonstrate
that this combination yields the most stable convergence and
exceptional performance. Based on the qualitative analy-
sis, it is concluded that MI-based image registration with
CycleGAN-based translated images is more suitable for the
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extrinsic calibration of radar and LiDAR systems compared
with traditional filter-based methods.

The qualitative results of the image registration, as
depicted in Fig. 8, demonstrate the effectiveness of the MI-
based image registration approach. The fourth column of
Fig. 8 illustrates the stable registration results obtained using
translated radar images. In contrast, the third column of Fig. 8
depicts the high ring and radial noise present in the origi-
nal radar images, which consistently leads to unsuccessful
registration on the LiDAR images. An interesting point of
the LiDAR-style-translated images is that compared with the
original radar images; translated images do not include the
penetrated points that are generated due to the characteris-
tic of radio waves, which leads to that the CycleGAN-based
translation not only reduces the noise level but also removes
the radar style points that is not possible to be acquired with
LiDAR sensors. These findings conclude that the translated
radar images exhibit a more stable registration on LiDAR
images than the original radar images for two reasons: (1)
less ring and radial noise level, (2) less characteristic of radar
point.

5 Conclusion

This paper proposed a novel pipeline for the extrinsic calibra-
tion between radar andLiDARsensors. The pipeline includes
the adjustment of images from each sensor to remove motion
distortion through deskewing utilizing the SLAM odometry,
IMU-preintegration, and B-spline interpolation. Addition-
ally, the pipeline employs CycleGAN to translate radar
images to LiDAR-style images, effectively preserving sig-
nificant information. The final step involves the application
of phase correlation and MI to obtain approximate extrin-
sic parameters. The proposed pipeline was experimentally
validated, showing improved accuracy in the extrinsic cali-
bration. The results of this study provide a foundation for 2D
image-based range sensor extrinsic calibration.

In future,wewould like to adaptCycleGAN-based radar to
LiDAR image translation in other fields, such as place recog-
nition, which is one of the important topics from the SLAM
community. Furthermore, as our work has removed some of
the discrepancies between radar sensor data and LiDAR sen-
sor data, we consider it would be possible to apply various
SLAMmethods that could not have been exploited for radar
sensors until now.
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