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Abstract
Place recognition is crucial for robot localization and loop closure in simultaneous localization and mapping (SLAM).
Light Detection and Ranging (LiDAR), known for its robust sensing capabilities and measurement consistency even
in varying illumination conditions, has become pivotal in various fields, surpassing traditional imaging sensors in
certain applications. Among various types of LiDAR, spinning LiDARs are widely used, while non-repetitive scanning
patterns have recently been utilized in robotics applications. Some LiDARs provide additional measurements such as
reflectivity, Near Infrared (NIR), and velocity from Frequency modulated continuous wave (FMCW) LiDARs. Despite
these advances, there is a lack of comprehensive datasets reflecting the broad spectrum of LiDAR configurations
for place recognition. To tackle this issue, our paper proposes the HeLiPR dataset, curated especially for place
recognition with heterogeneous LiDARs, embodying spatiotemporal variations. To the best of our knowledge, the
HeLiPR dataset is the first heterogeneous LiDAR dataset supporting inter-LiDAR place recognition with both non-
repetitive and spinning LiDARs, accommodating different field of view (FOV)s and varying numbers of rays. The dataset
covers diverse environments, from urban cityscapes to high-dynamic freeways, over a month, enhancing adaptability
and robustness across scenarios. Notably, HeLiPR includes trajectories parallel to MulRan sequences, making it
valuable for research in heterogeneous LiDAR place recognition and long-term studies. The dataset is accessible
at https://sites.google.com/view/heliprdataset.
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1 Introduction

Place recognition is an essential task in robotics, involving
the ability to identify whether a place has been visited before
or not. The significance of this task stems from its role as
an initial step towards localization and its contribution to
enabling loop closure in SLAM. Traditionally, it has been
accomplished by searching a query image within a database
using image sensors (Zhang et al. 2010; Arandjelovic et al.
2016; Lee and Kim 2021). However, recent advancements
have facilitated the adoption of LiDAR for place recognition,
attributable to its enhanced geometric sensing capabilities.
LiDAR-based place recognition has been gaining attraction
thanks to its capacity to measure the range precisely, and
distinct from image sensors, LiDAR has the advantage of
capturing geometric structures with illumination invariance.
Conventionally, LiDAR descriptors (Kim et al. 2021; Xu
et al. 2022b; Luo et al. 2021) are generated from the scan
and subsequently used to ascertain the presence or absence
of a place through comparison with a comprehensive set
of descriptors. While place recognition can be replaced
using global positioning system (GPS), it has limitations in
environments where signals are weak. LiDAR overcomes
these challenges with high-resolution spatial data, enabling
accurate place recognition even in GPS-denied areas,
underscoring its importance in complex navigation tasks.

With the advancement of place recognition, the hardware
capabilities of LiDAR have also evolved significantly. For
instance, specific LiDARs deploy non-repetitive scanning

patterns to achieve dense mapping, thus deviating from
traditional spinning LiDARs. Additionally, some LiDARs
feature a more significant number of rays, surpassing the
conventional 16 or 32-ray configurations, and incorporate
additional channels such as reflectivity and NIR. More
recently, the advent of FMCW LiDAR has made it
possible to measure relative velocity along the radial
direction utilizing the Doppler effect, commonly called
velocity measurement. Considering these developments in
LiDARs, place recognition with non-repetitive scanning
pattern LiDARs (Yuan et al. 2023, 2024) has also been
pursued. Furthermore, studies (Wang et al. 2020; Shan et al.
2021; Chen et al. 2020) that leverage the information offered
by the additional channels in LiDAR have also emerged.

Nevertheless, despite these advancements, there currently
exists a scarcity of datasets incorporating diverse combi-
nations of LiDARs for place recognition. This shortfall
highlights a gap in the availability of benchmark datasets for
validating place recognition operating with heterogeneous
LiDARs. Several datasets (Kim et al. 2020; Knights et al.
2023; Geiger et al. 2012) are conducive for tasks involving
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(i) Resolution Variances (High vs Low) (ii) FOV Variances (Large vs Narrow)

(iii) Scanning Pattern Variances (Repetitive vs Non-Repetitive)
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Figure 1. (Top row) LiDAR place recognition challenges (i) Variance in resolution between high and low ray count LiDARs affects
sensing abilities. (ii) While some LiDARs perform 360-degree scans, others have limited FOV due to occlusion or sensor limitations.
(iii) Most LiDARs scan the repetitive area, whereas non-repetitive LiDAR densely scan by stacking individual scans. However, each
scan tends to be sparse, as depicted in the left red box. (iv) Ground truth, crucial for executing LiDAR place recognition, is
challenging to determine due to varying LiDAR coordinates and scan acquisition times. (Bottom row) HeLiPR dataset provides
heterogeneous LiDARs and additional channels, thereby granting opportunities to utilize texture information from LiDAR.

place recognition, although they are equipped solely with a
spinning LiDAR. On the other hand, while there are datasets
inclusive of multiple LiDARs, these predominantly feature
spinning LiDARs (Jeong et al. 2019; Barnes et al. 2020;
Agarwal et al. 2020; Hsu et al. 2021), or they comprise het-
erogeneous LiDARs that are ill-suited for place recognition
(Qingqing et al. 2022; Helmberger et al. 2021; Jung et al.
2023).

This paper introduces the HeLiPR dataset, a unique het-
erogeneous LiDAR dataset for place recognition, encapsu-
lating spatiotemporal variations. Regarding environmental
diversity, our dataset was acquired over 37 days, with data
collection occurring 3 to 4 times. This acquisition provides
a variety of environments encompassing a narrow residential
area, urban cityscape, and environments with high dynamic
change. One of the key aspects of our dataset is the focus
on inter-LiDAR place recognition, which refers to the chal-
lenge of using multiple and diverse LiDARs both within
individual sessions, known as intra-session, and across dif-
ferent sessions, referred to as inter-session. The complex
challenges associated with this form of place recognition
are comprehensively represented in Figure. 1. The HeLiPR
dataset thoroughly encompasses each highlighted challenge,
demonstrating its applicability in the field. In addition, the
HeLiPR dataset includes trajectories similar to sequences
acquired from MulRan (Kim et al. 2020), enabling another
heterogeneous LiDAR and long-term place recognition with
a term of four years. The salient contributions of the HeLiPR
dataset are as follows:

1. The HeLiPR dataset includes heterogeneous LiDARs,
with OS2-128, VLP-16, Livox Avia, and Aeries II,
while most of the existing dataset involves only
spinning LiDARs. This configuration can underscore

the impact of disparities in resolution and scanning
patterns. Their additional channels, such as NIR,
reflectivity, and radial velocity, pave the way for novel
strategies in place recognition.

2. The HeLiPR dataset tackles heterogeneous LiDAR
place recognition. Based on our benchmark results,
the HeLiPR dataset underscores the growing need
for dedicated research in heterogeneous inter-LiDAR
place recognition. Furthermore, this dataset plays a
significant role in facilitating and guiding essential
research explorations in this field.

3. The HeLiPR dataset captures diverse environments
monthly, from residential to dynamic urban areas.
Moreover, trajectories akin to those in MulRan enable
heterogeneous LiDAR place recognition and support
long-term research spanning four years. This broad
spectrum of data acquisition positions HeLiPR as a
pivotal tool for generalizing place recognition across
varied scenarios.

4. The HeLiPR dataset provides individual LiDAR
ground truth corresponding to the acquisition time
of each LiDAR. This accurate ground truth, which
also considers spatial relationships, facilitates more
accessible validation and improves the reliability of
place recognition.

2 Related works
This section presents an overview of LiDAR datasets
pertinent to our research. A summary is provided in Table. 1.

The KITTI dataset (Geiger et al. 2012), gathered using
a carlike vehicle, represents a mid-sized cityscape. While
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Table 1. Dataset comparison for LiDAR-based place recognition. The number of channels refers to the additional channels,
excluding intensity. When the dataset contains non-identical paths that partially overlap with other sessions, it has inter-session
difference. Furthermore, the ★ represents the spatial scale based on sequence length.

Name LiDAR Loop Closure Spatial Scale Total Distance# Spinning # Solid State # Channels Intra-session Inter-session Temporal Diversity Inter-session Differnce

KITTI
Geiger et al. (2012) 1 ✗ ✗ ✓ ✗ ✗ ✗ ★ ★ 44 km

Complex Urban
Jeong et al. (2019) 2 ✗ ✗ ✓ ✓ 15 months ✓ ★ ★ ★ 190 km

Oxford Rdar
Barnes et al. (2020) 2 ✗ ✗ ✓ ✓ ✗ ✗ ★ ★ ★ 280 km

Ford Multi AV
Agarwal et al. (2020) 4 ✗ ✗ ✓ ✓ 4 months ✗ ★ ★ ★ 198 km

MulRan
Kim et al. (2020) 1 ✗ ✗ ✓ ✓ 2 months ✓ ★ ★ ★ 123 km

NTU VIRAL
Nguyen et al. (2022) 2 ✗ 2 ✗ ✗ ✗ ✗ ★ 1.9 km

Boreas
Burnett et al. (2023) 1 ✗ ✗ ✓ ✓ 12 months ✗ ★ ★ ★ 350 km

Pohang Canal
Chung et al. (2023) 3 ✗ 2 ✗ ✓ 1 month ✗ ★ ★ 45 km

Wild Place
Knights et al. (2023) 1 ✗ ✗ ✓ ✓ 14 months ✓ ★ ★ 33 km

Hilti 2021
Helmberger et al. (2021) 1 1 2 ✗ ✗ ✗ ✗ ★ 2.1 km

Tiers
Qingqing et al. (2022) 3 3 2 ✗ ✗ ✗ ✗ ★ 2 km

HeLiPR 2 2 3 ✓ ✓ 1 + 53 months ✓ ★ ★ ★ 164 km

Table 2. The heterogeneous LiDARs utilized in Our Dataset

Sensor Manufacture Model Channel FOV (H× V) Range

Spinning Ouster OS2-128 128 360○ × 22.5○ 200 m
Spinning Velodyne VLP-16 16 360○ × 30○ 100 m

Solid state Livox Avia 6 70○ × 77○ 450 m
Solid state Aeva Aeries II 64 120○ × 19.2○ 150 m

it facilitates intra-session place recognition, the dataset falls
short in supporting inter-session place recognition, with data
acquisition solely reliant on a single HDL-64E. On the other
hand, the Oxford Robotcar Radar Dataset (Barnes et al.
2020), which shares a similar environment with KITTI,
introduces the possibility for inter-session place recognition.
However, even though multiple LiDARs are incorporated,
all are of the spinning type. The Ford Multi-AV Dataset
(Agarwal et al. 2020) stands out due to its extensive
trajectory covering a range of environments from urban
to vegetated, including tunnels, and showcasing seasonal
changes. Similarly, Boreas (Burnett et al. 2023) meets
the conditions necessary for intra and inter-session place
recognition. However, each sequence from Boreas and the
Ford Multi-AV dataset consists of similar paths, reducing the
complexity in inter-session place recognition. The Complex
Urban Dataset (Jeong et al. 2019) and UrbanNav Dataset
(Hsu et al. 2021), both situated within urban environments,
lean more towards intra-session place recognition, offering
limited avenues for inter-session recognition. The Wild
Places (Knights et al. 2023) stands apart by ensuring both
intra-session and inter-session place recognition, factoring in
temporal variations. Nevertheless, it focuses on unstructured
terrains and employs a single spinning LiDAR. Unlike the
previous dataset, the Pohang Canal dataset (Chung et al.
2023) utilizes multiple LiDARs. However, sessions for inter-
session place recognition are not adequate as the trajectory of
all sessions has an identical path. The NTU VIRAL dataset
also exploits multiple LiDARs; however, its primary focus
on unmanned aerial vehicle (UAV) localization, particularly
in smaller areas for maintaining the tracking of the Leica
laser system, tends to overshadow its application in place
recognition.

Many of the datasets mentioned above primarily rely
on spinning LiDARs. More recent datasets, such as Tiers
(Qingqing et al. 2022), Hilti 2021 (Helmberger et al. 2021),
and City (Jung et al. 2023) dataset, have begun to incorporate
heterogeneous LiDARs. The Tiers and Hilti 2021 datasets
feature short-term indoor and outdoor data collection using
carlike vehicles and handheld systems. Similarly, the City
dataset captures urban areas using a vehicle-based system.
Although these datasets employ heterogeneous LiDARs,
their primary focus is on SLAM. As a result, they tend
to have relatively short paths, which means that revisits
are either minimal or non-existent in sequences, rendering
intra-session place recognition unfeasible. Additionally, the
lack of overlap in their sequences means these datasets are
unsuitable for validating inter-session place recognition.

The HeLiPR dataset distinguishes itself from others by
showcasing diverse LiDARs, encompassing the OS2-128,
VLP-16, Livox Avia, and Aeva Aeries II, each with unique
attributes. These sensors capture data channels such as NIR,
reflectivity, and radial velocity, ushering in new avenues
for inventive place recognition. Significantly, the HeLiPR
dataset captures each sequence over a month, supplying
rich environments that support both intra-session and inter-
session place recognition. Furthermore, the HeLiPR dataset
trajectories resonate with sequences derived from MulRan,
thus promoting research in heterogeneous LiDAR place
recognition and offering an extended temporal perspective.
Conclusively, every sequence in HeLiPR illustrates a vast
environment with variations.

3 System Overview

3.1 System Configuration
Our system comprises four distinct LiDARs, as depicted in
Table. 2 and Figure. 2. The spinning OS2-128 LiDAR is
mounted at the center of the system, elevated to allow dense
scanning without any occlusion. In contrast, the spinning
LiDAR, VLP-16, experiences particular self-occlusion
because of its proximity to the front box and surrounding
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VLP-16 OS2-128

INS

IMU

Aeries II

Avia

VLP-16

OS2-128

INS Avia

Aeries II

IMU

(a) Sensor coordinate with XY plane information

(b) Sensor coordinate with Z axis Information

x
y
z

Figure 2. Sensors coordinate information between sensors. (a)
and (b) represent the transformation with the xy-plane and
z-axis. After the extrinsic calibration, the inter-sensor
transformation can be found in the Calibration folder.

sensors. This self-occlusion leads to an inability to fully scan
the front view, impacting the data collection and operational
limitations. Also, due to inherent hardware constraints, it
casts a significantly smaller ray than the OS2-128, enabling
only a peripheral scan of its surroundings. The remaining
LiDARs, Livox Avia and Aeva Aeries II are oriented to
scan the front view of the vehicle, and each presents unique
limitations. In the case of the Avia, its unconventional
scanning patterns deviate from traditional spinning LiDARs;
thus, direct comparison with them is challenging. However,
Avia can construct dense maps with accumulating non-
repetitive scans based on the relative transformation between
scans. The Aeries II also presents a narrow horizontal
FOV. Even if this LiDAR has the advantage of detecting
radial velocities of points, FMCW technology introduces
noise into the range measurements. Among several range
configurations, we choose the configuration with maximum
range of 150 m. This choice is made since a longer-range
configuration leads to more noise, which could compromise
accuracy. This combination of LiDARs, with their unique
scanning patterns, allows for an intriguing exploration in
place recognition, including dealing with occlusion scenarios
and contrasting low versus high resolution as shown in
Figure. 1. Furthermore, leveraging the characteristics of
these LiDARs could significantly enhance place recognition
in environments characterized by substantial dynamics or
rich textures. The additional channels offered by each sensor
can be found in Figure. 4, and we have identically configured
all the LiDAR sensors to operate at a frequency of 10 Hz.

In addition to the LiDARs, our system incorporates two
types of inertial sensors, the inertial measurement unit
(IMU) and the inertial navigation system (INS). These
devices provide a means to determine the temporal and
spatial relationships within the asynchronous LiDAR system.
We employ the Xsens MTi-300, which measures inertial
information at 100 Hz. We use the SPAN-CPT7 coupled
with a dual VEXXIS GNSS-501 antenna to establish a
baseline for the vehicle system. All baselines are achieved at

Odometry

(a) Calibration Trajectory

⚫ OS2-128
⚫ VLP-16
⚫ Livox Avia
⚫ Aeries II

(b) Entire Scans from LiDARs

Figure 3. (a) Extrinsic calibration trajectory: A circular path
used for map construction and calibration purposes. (b)
Post-calibration LiDAR alignment: A sky plot view illustrating the
contours overlap between individual LiDAR scans.

a frequency of 50 Hz using RTK GPS and INS. Due to each
sensor acquiring measurements in its own coordinate system,
an extrinsic calibration process is necessary to integrate all
the data into a standard coordinate system. This ensures
consistency and accuracy across various measurements.

3.2 Sensor Calibration
For simplicity, we employ symbols to represent the
coordinate systems: L corresponds to the LiDAR, N
signifies the INS, I is used for the IMU, and W indicates
the world system.

3.2.1 Multiple LiDAR Extrinsic Calibration To calculate
the extrinsic calibration between LiDARs, we utilize the
existing calibration method (Liu et al. 2022). In this method,
the trajectories from each LiDAR are obtained and updated
through batch optimization with scans from each LiDAR.
After that, based on the updated trajectories and the initial
extrinsic calibration parameters, batch optimization with
multiple LiDARs is re-performed to calculate an accurate
extrinsic calibration. To implement this method properly,
a specified procedure is followed. The initial step involves
moving the system a minimum distance to ensure trajectory
accuracy. A complete 360-degree rotation follows this to
facilitate the capture of loop closure for narrow FOV
LiDARs. In the case of vehicles, given their inability to rotate
in place, the system proceeded with a circular trajectory as
shown in Figure. 3(a). Furthermore, considering the potential
distortion of LiDAR that might occur during motion, we
stop the movement for 10 seconds during a motion and
acquire a total of 30 scans with stationary. Lastly, considering
the sparsity of a single scan from the Livox Avia, LiDAR
scans are accumulated in a stationary condition. The initial
extrinsic calibration is established using the CAD model.
Additionally, the odometry for each LiDAR is obtained using
Direct LiDAR Odometry (Chen et al. 2022). As depicted in
Figure 3(b), it is clear that all the LiDARs are accurately
aligned due to the precise extrinsic calibration.

3.2.2 IMU-LiDAR Extrinsic Calibration The extrinsic
calibration between the IMU and the LiDAR commences
with the CAD model serving as the initial estimation. The
extrinsic calibration of the IMU-LiDAR (TL

I ) is subsequently
computed using LiDAR-Inertial Odometry (Xu et al. 2022a).
It is updated while transforming the LiDAR scan to
IMU coordinates and calculating the point-to-plane distance
relative to the global map. However, achieving 6-DOF
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<time.bin>

Ouster

<time.bin>

Velodyne

<time.bin>

IMU_Ouster_extrinsic.txt

LiDAR_extrinsic.txt

INS_IMU_extrinsic.txt

LiDAR_GT

Avia_gt.txt

Aeva_gt.txt

Ouster_gt.txt

Inertial_data

inspva.csv

xsens_imu.csv

Velodyne_gt.txt

/Aeva/*.bin
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z
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velocity

line_index
time_offset_ns

/Avia/*.bin
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reflectivity
tag

offset_time
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z
intensity
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time

/Ouster/*.bin
x
y
z
intensity
t

ring
reflectivity

ambient

Bin file structure

stamp.csv

Figure 4. File structure of the HeLiPR dataset, illustrating the
organization of LiDAR scans, ground truths, calibration, and
inertial sensor measurements for each sequence

motion with a vehicle can prove challenging, which may
adversely impact the accuracy of the extrinsic calibration
between them. To mitigate this issue, the extrinsic calibration
is updated with a minimal covariance, ensuring no significant
deviation from the initial estimation. The entire process is
executed based on the Roundabout01 sequence, leading
to the calculation of extrinsic calibration between the OS2-
128 and the IMU. The reason for selecting these two sensors
is that they are positioned colinearly, resulting in an almost
zero distance between one axis. Additionally, as the two
sensors share the same axis, the initial estimate of these
parameters remains the most accurate among all the LiDARs.

3.2.3 INS-IMU Extrinsic Calibration The extrinsic cali-
bration between the INS and IMU is conducted using MA-
LIO (Jung et al. 2023). This method is particularly effective
for asynchronous LiDARs. As the trajectory from MA-LIO
is aligned to the IMU coordinate system, the subsequent
hand-eye calibration between the INS and IMU can be
executed. Specifically, the relative transformation, or ∆TN ,
between TN at two distinct timestamps tNi and tNj is deter-
mined. Similarly, the relative transformation, ∆TI , between
TI at timestamps tIi and tIj is ascertained. Considering the
non-coincident time, tN , and tI , we synchronize the acqui-
sition time across both sensors to minimize time discrep-
ancies. Then, the extrinsic calibration between the INS and
IMU is achieved via the equation ∆TNTI

N = TI
N∆TI . We

employ 15000 transformations from the Roundabout01
sequence to carry out the calibration, with the maximum time
difference registering at approximately 1 ms ⋅ Moreover,
it is worth noting that the fidelity of hand-eye calibration
is inherently reliant on the precision of the MA-LIO. As
such, we employ the CAD model specifically for the z-axis
translation, which is most susceptible to errors in LIO. For
all other components, we use the results from the hand-eye
calibration.

4 Description of HeLiPR Dataset

4.1 Data Format
We offer sensor-specific data as individual files in diverse
formats to optimize dataset management and facilitate access
to each file and frame. Furthermore, we supply a file
player based on Robot Operating System (ROS), tasked with
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Figure 5. INS-based trajectories for sequences 01, 02, and
03. The left shows trajectories on aerial images for 01, while
the right visualizes 02 (bottom) and 03 (top) with a color
gradient. Notably, red indicates the start point, while blue
designates the endpoint.

reading and publishing these files into ROS topics, ensuring
seamless accessibility for pre-existing place recognition
and tasks like SLAM. The file structure of the HeLiPR
dataset is delineated in Figure. 4. The acquisition time of
all measurements is stored in stamp.csv, and detailed
descriptions of the data are presented subsequently.

4.1.1 Multiple LiDARs Data Individual LiDAR scans are
stored as binary files in the LiDAR/Sensor name. These
files, identified as <time.bin>, encompass common
channels such as (x, y, z), time offset, and ring (or line)
index. We illustrate the array of unique channels for each
LiDAR and the order of their storage in Figure. 4.

4.1.2 INS Data All INS data are stored in the
inspva.csv. This file includes time, latitude, longitude,
height, north velocity, east velocity, up velocity, roll, pitch,
azimuth, and data status, organized in this order. Each value
adheres to the East-North-Up (ENU) coordinate system,
with the azimuth being determined by a left-handed rotation
around the z-axis, in degrees, and clockwise from north.

4.1.3 IMU Data The complete set of IMU data is
contained within the xsens imu.csv file. Sequentially,
this file encompasses time, quaternion (x, y, z,w), Euler
angles (x, y, z), gyroscope (x, y, z), acceleration (x, y, z),
and magnetic field (x, y, z).

4.1.4 Calibration and Ground truth Data The results
of extrinsic calibration are saved in the Calibration.
Additionally, we derive the individual LiDAR ground truth
based on INS, LiDAR acquisition time and calibration
parameters. Within the LiDAR GT, the ground truth for
each LiDAR is recorded, incorporating scan time, position
(x, y, z), and quaternion (x, y, z,w). The procedure for
generating this file is discussed in §4.3.
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Table 3. The Description for Each Sequence.

Sequence Name Characteristics
Sequence Index

01 02 03 04
Date Duration Distance Date Duration Distance Date Duration Distance Date Duration Distance

Roundabout Various rotation variations 2023-07-16 2730 s 9040 m 2023-08-01 2085 s 7447 m 2023-08-13 2515 s 9262 m - - -
Town FOV issue in narrow areas 2023-07-18 2414 s 7832 m 2023-07-31 2689 s 8203 m 2023-08-14 2528 s 8903 m - - -

Bridge Similar scenes and dynamic objects 2023-07-17 2144 s 23056 m 2023-07-31 2562 s 14615 m 2023-08-14 2009 s 19400 m 2023-08-21 3033 s 22958 m

(a) Roundabout

A

B

C

(b) Town (c) Bridge

Figure 6. Characteristics of sequences. (a) Roundabout with three distinct roundabouts, each highlighted by a colored box. (b)
Town showcasing a mix of narrow alleys and wider boulevards with width indications for areas A, B, and C, which are measured
approximately 15 m, 3 m and 5 m in width. Dynamic entities, such as pedestrians (blue) and vehicles (Red), are marked. (c)
Bridge emphasizing the challenge of scene similarities within the sequence. The portions of the bridge highlighted in blue and
green boxes appear remarkably similar but display subtle differences, as indicated in the red box. Additionally, the presence of
dynamic objects (red) and variations in numbers between Bridge01 (upper) and Bridge02 (lower) pose quite challenges for
place recognition.

4.2 Sequence Explanation

In the HeLiPR dataset, we present three distinct places,
namely Roundabout, Town, and Bridge. These places
are meticulously acquired through three repetitions denoted
as 01-03, with a two-week interval between each acqui-
sition. The deliberate interval introduces temporal changes
to enable inter-session place recognition. Furthermore, this
temporal variation encompasses both night and day envi-
ronments, leading to notable variations in the presence of
dynamic objects throughout the sequences. It also allows
for spatial variations, such as lane changes or reversing
directions, when capturing data at the same location but on
different paths. Detailed information, including acquisition
time, duration, and distance, can be found in the Table. 3.
Each sequence showcases unique environmental charac-
teristics and introduces novel challenges in inter-LiDAR
place recognition. We focus on enhancing both intra-session
and inter-session loop closure candidates, with the primary
objective of generating an abundant set of queries for place
recognition. All sequences’ trajectory and characteristics are
represented in Figure. 5 and Figure. 6.

(i) Roundabout01-03: Roundabout stands out as
the most formal environment for place recognition among
all the sequences. Tall buildings and wide roads enrich the
dataset with abundant features that aid in place recognition.
As its name suggests, it consists of three roundabouts: one
large and two of a comparatively smaller size, as shown
in Figure. 6(a). The presence of a large roundabout and an
outer hexagon design ensures easy revisiting of previously
encountered locations. Moreover, the interconnected layout
of roads and alleys within both the roundabout and
hexagon facilitate seamless movement, enabling access to
various exits from any entrance. These spatial features
provide diverse candidates for place recognition and
rotational variations not typically encountered in regular road
scenarios.

(ii) Town01-03: Town presents a wide road environ-
ment in the center of the route, facilitating efficient scan-
ning of buildings and structures. This characteristic shares
similarities with the Roundabout sequence. However, in
Town, the buildings are relatively short compared to those in
Roundabout, and narrow alleys are more frequent. These
alleys pose challenges in utilizing the wide sensing capa-
bilities of LiDAR, creating a situation akin to indoor place
recognition. These challenges can be found in Figure. 6(b).
Furthermore, the presence of diverse dynamic objects in
narrow alleys contributes to a lower proportion of static
objects in the scene. Spinning LiDAR systems effectively
address these limitations with their expansive FOV. In con-
trast, solid-state LiDAR systems inherently have a narrower
FOV, potentially leading to a significantly reduced detection
of static objects. These environment-related disparities add
another layer of complexity to place recognition, demanding
sophisticated approaches to handle such spatial variations
effectively.

(iii) Bridge01-04: Bridge consists of a total of 2
laps, covering two bridges with lengths of 1.3 km and 0.8
km , respectively. It should be noted that Bridge01 and
Bridge04 differ from Bridge02 and Bridge03, with
the former being driven using a reverse trajectory. This place
introduces a significant challenge in place recognition due
to the consecutive appearance of similar scenes in most
areas. The appearances with small differences represented
in Figure. 6(c) can lead to result in many false positives.
Moreover, numerous dynamic objects add complexity to
place recognition, particularly depending on the sequence
index. Notably, Bridge02 and Bridge04 display a
relatively slow speed distribution attributed to the high
density of dynamic objects. The Aeries II, which is a FMCW
LiDAR, allows for measuring the radial velocity of a point,
enabling the detection of certain dynamic objects. This
capability opens up the potential for developing a novel place
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Figure 7. Partial individual ground truth for Roundabout01.
Using individual ground truth with Velodyne as a reference, true
positive place recognition candidates are observed for all
LiDARs within a 3 m radius of other paths (black box). However,
exact matches with the INS location (within a 5ms discrepancy)
are only found in Aeva.

recognition based on this specific sequence and leveraging
the unique features of the Aeries II.

4.3 Estimating Individual LiDAR Ground Truth
with B-spline Interpolation

In place recognition, the positions of the query and the
candidate must be determined, necessitating the precise
positions of the LiDAR at each timestamp. Solutions such
as GPS, INS, or SLAM can be employed to determine
the trajectory of the system, with the resulting trajectory
treated as the ground truth. However, considering that
this ground truth represents the location of a reference
point at specific timestamps, it is essential to account for
spatiotemporal variances when expressing precise positions
for all LiDARs. Extrinsic calibration, defining the spatial
relationship, introduces differences between the LiDAR
and the ground truth. Although all LiDARs capture scans
under Coordinated Universal Time (UTC) via Precision
Time Protocol (PTP), their individual acquisition times vary,
leading to temporal discrepancies. As a result, timestamps
from each LiDAR do not align with the ground truth
time. The ground truths for each LiDAR and the single
source are depicted in Figure 7, emphasizing the necessity
of obtaining ground truths for all LiDARs by considering
spatiotemporal variances rather than relying on a single
ground truth. The figure also demonstrates that assuming
Velodyne is at the same position as the ground truth from
a single source results in only the Aeva set being identified
as true positive. However, accounting for discrepancies
allows different LiDAR sets to be recognized as true
positives. This underscores the importance of considering
these variances for more comprehensive and accurate place
recognition. Therefore, incorporating such discrepancies is
beneficial when leveraging multiple LiDARs, providing a
more practical approach than relying on a single ground
truth.

For the HeLiPR dataset, INS serves as ground truth.
While INS operates at a frequency of 50 Hz, which is

five times faster than the LiDAR, timestamps of INS are
not synchronous with timestamp of LiDARs. To mitigate
this issue, we calculate the location of LiDARs at specific
timestamp using B-spline interpolation (Mueggler et al.
2018) based on INS position, as relying solely on linear
approximation may lead to imprecision. We choose B-
spline interpolation for its compatibility with the inherently
smooth characteristics of real vehicle trajectories. Given
that the kth scan of a specific LiDAR, denoted as Lk, is
acquired at time tk, this position, TN

W = (RN
W , tNW ) can be

determined by leveraging four nearby INS measurements
as control points. Nevertheless, our primary interest lies in
determining the location of TL

W = (RL
W , tLW ) in the world

coordinates of L. It can be calculated as the multiplication
with TN

W , IMU-LiDAR (TL
I ) and INS-IMU (TI

N) extrinsic
calibration. To achieve user convenience, we standardize TL

W

using the Universal Transverse Mercato (UTM) coordinate
system, opting not to employ latitude or longitude. This
decision simplifies plotting processes, and these coordinates
streamline the direct comparison of trajectories with each
other and the MulRan dataset.

In summary, our approach goes beyond simply utilizing
multiple LiDARs for place recognition. By embracing
the individual trajectories and specific ground truths of
each LiDAR, we enable a more comprehensive evaluation
of spatiotemporal variations. Our diverse ground truths
significantly improve the accuracy and reliability of place
recognition outcomes over relying solely on a single ground
truth.

4.4 HeLiPR Dataset: Long-Term Place
Recognition in Tandem with MulRan

The HeLiPR dataset not only encompasses the sequences
of Roundabout, Town, and Bridge, but also integrates
sequences from the MulRan dataset, including KAIST, DCC,
and Rivierside, catering to long-term place recognition.
Contrary to the MulRan dataset captured with OS1-64, the
HeLiPR dataset employs the LiDARs as mentioned earlier.
This introduces the potential for heterogeneous LiDAR place
recognition. Furthermore, a temporal variance spanning
approximately four years offers a novel challenge: long-term
place recognition.

The Long-term place recognition challenge within the
HeLiPR dataset includes sequences 04-06. The 04
sequence, captured at midnight, exhibits an almost complete
absence of dynamic objects. IMU measurements are not
included in this sequence but are not crucial for place
recognition. In contrast, the 05 sequence, captured during
the daytime, features diverse dynamic objects resembling
the existing MulRan sequences. Unlike 04 and 05, 06
was captured four months later. This period, shorter than
the four-year gap with MulRan, reduces its complexity as
a long-term place recognition challenge. Nonetheless, the
temporal differences between 04, 05, and 06 offer a distinct
perspective, capturing scene changes over a more moderate
term. A comprehensive overview of each sequence can be
found in Table. 4 and Figure. 8. Thanks to GPS and INS,
the trajectories from MulRan and HeLiPR align seamlessly
despite being captured at distinct times, facilitating place
recognition. As observed in Figure. 8, certain areas show
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Table 4. The Description for Additional Sequences.

Sequence Name
Sequence Index

04 05 06
Date Time Duration Distance Date Time Duration Distance Date Time Duration Distance

KAIST 2023-08-31 Midnight 1261 s 6348 m 2023-08-31 Daytime 1248 s 6878 m 2024-01-16 Night 1215 s 6661 m
DCC 2023-08-31 Midnight 786 s 5506 m 2023-08-31 Daytime 1081 s 5309 m 2024-01-16 Night 1074 s 4648 m

Riverside 2023-08-31 Midnight 612 s 6523 m 2023-08-31 Daytime 855 s 6394 m 2024-01-16 Night 1195 s 7219 m

2019 KAIST03 2023 KAIST04

Long-Term Changed (4 years)

KAIST03-06 DCC03-06 RiverSide03-06

2023 KAIST04

Construction

Barricade

Constructed

Building

2019 KAIST03

Open

Parking Lot

Construction

Barricade

Occluded 

Building

Constructed

Building

Constructed

Parking Tower

2024 KAIST06

Long-Term Changed (5 years)

Long-Term Changed (5 months)

2019 Riverside03 2024 Riverside06

Changed

Closed Area Open Area

Unchanged

Figure 8. (Top row) Trajectories from GPS and INS data with
three paths for each location, as Figure. 5. (Bottom row) shows
environmental changes in the order 03, 04, and 06. The
KAIST depicts gradual scene changes at a similar location.
Riverside highlights the distinct scan differences caused by
different LiDARs and shows drastic changes between open and
closed areas. The last row shows similar scans even after a
long period.

partial modifications. From KAIST03 to KAIST06, for
instance, the construction of parking lots and buildings leads
to significant scene changes. These new structures alter the
landscape and occlude the LiDAR, causing scenes to appear
different even in the same location. Such changes are crucial
for both place recognition and change detection, as well as
for map maintenance. Furthermore, in Riverside03, the
scanning coverage is more limited compared to the current
platform, with obstructions like a construction barricade
blocking the upper right view from the vehicle. This
limitation emphasizes the need to carefully compare similar
areas and reduce reliance on regions with substantial scene
changes for long-term place recognition in Riverside06.
The challenge lies in accurately identifying revisits to
specific locations, particularly in scenarios where parts of the
environment have changed. In such cases, it becomes crucial
not only to recognize these changes but also to possess the

capability to compare current scenes with previous ones by
focusing on elements that remain unchanged. This situation
also prompts further exploration into the extent of scene
changes that can be accommodated in place recognition,
questioning whether significantly altered locations can still
be recognized as the same for revisiting purposes.

5 Benchmark Results with HeLiPR Dataset
This section presents an exhaustive analysis of state-of-
the-art place recognition using the HeLiPR dataset. The
comprehensive evaluation aims to identify the capabilities of
state-of-the-art place recognition and emphasize the inherent
need and importance of having datasets like HeLiPR to
advance the field further. To assess the performance of the
methodologies, which include Scan Context (SC) (Kim et al.
2021), RING++ (Xu et al. 2022b), BTC (Yuan et al. 2024)
and LoGG3D-Net (Vidanapathirana et al. 2022), we employ
three evaluation metrics: the Precision-Recall curve (PR-
curve), the Area Under the Curve (AUC) score and R@1%.

Precision-Recall Curve (PR-Curve): This curve is an
illustrative representation of a precision versus its recall. It
provides a comprehensive visualization of the performance
across different threshold levels. Mathematically, it can be
expressed by the following equations:

Precision = TP
TP + FP

, Recall = TP
TP + FN

(1)

where TP denotes true positives, FP represents false
positives, and FN signifies false negatives.

Area Under the Curve (AUC): This metric evaluates the
overall performance of a place recognition. The AUC score
provides a singular scalar value summarizing the entire PR
curve. A perfect recognition method would achieve an AUC
of 1.0, indicating flawless recognition, while a score closer
to 0.5 might indicate a method performing no better than
random guessing.

R@N(%): R@N(%) evaluates the recall within the top
N or N percentage of results, which is calculated by
determining if the true positive pairs are within the N or N
percentage of the closest matches in the database. This metric
provides insight into how effectively the algorithm identifies
the most accurate matches from a larger pool of candidates,
offering a more detailed perspective on its precision in high-
relevance scenarios. For the benchmark results, we select
N = 1 and represent both R@N and R@N%.

For the evaluation, the methodology entails sampling
query scans at 10 m intervals and target scans at 5
m intervals. Successful place recognition is defined by
identifying a candidate within a 7.5 m, termed a true
positive. All scans have been undistorted and are configured
with a maximum range of 100 m for descriptor extraction.
For methods other than BTC, only the scans from Livox
Avia are grouped into sets of 20 due to their sparse point
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Table 5. AUC score and R@N for inter-LiDAR and inter-session place recognition

Sequences Method
Identical LiDARs Heterogeneous LiDARs

O-O A-A O-V O-A O-L
AUC R@1 R@1% AUC R@1 R@1% AUC R@1 R@1% AUC R@1 R@1% AUC R@1 R@1%

Roundabout01-03

SC 0.942 0.880 0.947 0.786 0.648 0.681 0.119 0.077 0.130 0.007 0.008 0.018 0.017 0.018 0.030
BTC 0.669 0.604 0.946 0.702 0.575 0.672 0.302 0.323 0.789 0.113 0.114 0.359 0.088 0.100 0.413

RING++ 0.950 0.926 0.993 0.809 0.640 0.704 0.067 0.069 0.251 0.003 0.004 0.052 0.003 0.004 0.047
LoGG3D 0.766 0.552 0.639 0.746 0.538 0.629 0.531 0.442 0.612 0.641 0.474 0.605 0.392 0.333 0.522

Town01-03

SC 0.957 0.826 0.918 0.811 0.601 0.719 0.312 0.174 0.219 0.024 0.020 0.057 0.095 0.068 0.133
BTC 0.625 0.463 0.650 0.685 0.482 0.569 0.343 0.291 0.467 0.149 0.136 0.377 0.153 0.149 0.403

RING++ 0.965 0.935 0.991 0.919 0.718 0.778 0.098 0.083 0.252 0.062 0.009 0.071 0.004 0.005 0.054
LoGG3D 0.829 0.607 0.705 0.779 0.553 0.687 0.448 0.354 0.575 0.611 0.452 0.634 0.267 0.258 0.424

Bridge02-03

SC 0.713 0.786 0.948 0.666 0.712 0.925 0.108 0.091 0.183 0.019 0.018 0.035 0.012 0.013 0.041
BTC 0.447 0.422 0.676 0.396 0.423 0.707 0.187 0.226 0.463 0.060 0.079 0.305 0.071 0.092 0.370

RING++ 0.868 0.855 0.995 0.802 0.800 0.993 0.037 0.049 0.238 0.005 0.018 0.035 0.005 0.013 0.041
LoGG3D 0.692 0.670 0.903 0.612 0.599 0.890 0.347 0.389 0.778 0.486 0.518 0.851 0.263 0.303 0.597

- Symbol denotes LiDARs. (O: Ouster, A: Aeva, L: Livox, V: Velodyne)
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Figure 9. PR-Curve of inter-session place recognition between
Bridge02 and Bridge03. (a) depicts the results when
identical LiDAR systems are compared, illustrating the
performance when different types of LiDARs each match with
an identical LiDAR. (b) showcases the outcomes when
heterogeneous LiDARs are used.

distribution. However, when evaluating BTC, similar to
the original research, we accumulate 20 scans for every
type of LiDAR. This approach differentiates it from other
methods that typically use a single scan. LoGG3D-Net
is selected for the deep learning-based place recognition
method since LoGG3D-Net provides benchmark results of a
mean maximum F1 score on the KITTI and MulRan datasets.
The parameters and strategies for training can be found in our
project page.

We evaluate each method using three inter-session pairs:
Roundabout01-03, Town01-03, and Bridge02-03.
Using Ouster as the reference database, we employ various
LiDARs as queries to identify the corresponding Ouster
candidates. To assess the influence of FOV, we also
perform evaluations using the same LiDAR type. As detailed
in Table. 5, we evaluate the four methods across three
environments using five LiDAR pairings. This experimental
configuration underscores the expansive scenarios of place
recognition that the HeLiPR dataset can facilitate.

From Figure. 9 and Table. 5, we can discern several
insights about the performance of place recognition. In
terms of the dataset perspective, most methods tend to
exhibit superior performance in Roundabout and Town
compared to Bridge, likely due to the distribution of
structures and inherent challenges highlighted in Figure. 6.
Furthermore, for the model-based method, spinning LiDAR
generally achieves better results with a higher AUC score
and R@N than solid-state LiDAR. This is anticipated, given
that spinning LiDARs have a large FOV. This expansive
FOV equips them to adeptly handle place recognition from
varied directions, including in scenarios like reverse visiting
or navigating intersections.

In inter-LiDAR place recognition, we observed specific
challenges associated with different LiDAR pairings: Ouster
and Velodyne show resolution differences, Ouster and Aeva
differ in horizontal FOV, and Ouster and Livox vary in both
horizontal FOV and scanning patterns. These differences
significantly affect the performance of model-based methods
like RING++ and Scan Context, which are sensitive to
LiDAR FOV variations as these descriptors are constructed
with different FOVs in inter-LiDAR place recognition, a
notable performance dip is observed in inter-LiDAR place
recognition.

Contrary to other methods, BTC stands out in inter-
LiDAR place recognition, particularly excelling in R@1%
performance compared to other model-based approaches;
however, its AUC and R@1 scores fall short of expectations.
This discrepancy arises from the nearest target not having
the largest similarity, meaning that the similarities between
the query and target are not always aligned with the
distance. Furthermore, there are instances where the overlap
is significant, but the distance exceeds 7.5m, resulting
in a false negative. Consequently, while the AUC and
R@1 might seem underwhelming since they only utilize
the best candidates, the R@1% shows a improvement
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due to the enhanced possibility of identifying compatible
matches among the total candidates. Unlike traditional
place recognition for spinning LiDAR, place recognition
of heterogeneous LiDAR may have a smaller overlap
depending on the FOV or maximum range, even if the
distance between query and target is close. Therefore, it is
also proposed to distinguish based on overlap rather than
distance as a criterion for determining true positives.

For the learning-based method, LoGG3D-Net, a slight
underperformance is noted in identical LiDAR place
recognition compared to model-based methods. However, it
performs better inter-LiDAR place recognition, benefitting
from training with super sequences that enhance its
ability to distinguish between heterogeneous LiDARs. This
is evident in its AUC score and R@N, with robust
results in Ouster-Aeva comparisons. The similarity in the
number of vertical channels between Ouster and Aeva
likely contributes to better local feature aggregation. In
contrast, Ouster and Livox exhibit lower scores, primarily
because of the significant differences between their LiDAR
characteristics, especially in comparison to Ouster and
Velodyne. This emphasizes the sensitivity of LiDAR
performance to resolution and FOV, with dual degradation
occurring when FOV and scanning patterns differ. While the
learning-based method shows promise for inter-LiDAR place
recognition, effectively handling heterogeneous LiDARs
remains challenging.

In summary, model-based methods excel when using
identical LiDARs but fall short in inter-LiDAR scenarios. On
the other hand, learning-based methods maintain consistent
performance across various LiDAR combinations but only
achieve partially satisfactory results. Recent learning-based
methods try to perform place recognition with FOV
variations (Kong et al. 2020; Vidanapathirana et al. 2021), it
do not present reliable performances since FOV variances are
relatively smaller than the difference between solid state and
spinning LiDAR. All approaches currently need to be revised
to achieve the desired performance levels. This analysis
highlights the need for focused research in heterogeneous
inter-LiDAR place recognition, with the HeLiPR dataset
serving as a valuable resource for such investigations.

6 Conclusion
The HeLiPR dataset stands as a comprehensive resource that
has been meticulously curated to showcase the remaining
challenges of place recognition. It encompasses a broad
spectrum of data from varied environments, including
Roundabout, Town, and Bridge. One of the unique
attributes of this dataset is its collection method; by
introducing intentional time intervals and capturing data
along diverse paths, we are ensuring the data reflects real-
world spatiotemporal challenges. This not only mimics the
dynamic nature of real-world scenarios but also enhances
the application in localization and place recognition tasks.
Additionally, the HeLiPR dataset overlaps with the MulRan
dataset for long-term place recognition, presenting novel
challenges in place recognition. With these features, the
HeLiPR dataset is poised to become a valuable resource
for improving place recognition and robotics applications,
promoting advancements in the field.
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