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Abstract— LiDAR place recognition is a crucial module in
localization that matches the current location with previously
observed environments. Most existing approaches in LiDAR
place recognition dominantly focus on the spinning type LiDAR
to exploit its large FOV for matching. However, with the recent
emergence of various LiDAR types, the importance of matching
data across different LiDAR types has grown significantly—a
challenge that has been largely overlooked for many years. To
address these challenges, we introduce HeLiOS, a deep network
tailored for heterogeneous LiDAR place recognition, which
utilizes small local windows with spherical transformers and
optimal transport-based cluster assignment for robust global
descriptors. Our overlap-based data mining and guided-triplet
loss overcome the limitations of traditional distance-based
mining and discrete class constraints. HeLiOS is validated on
public datasets, demonstrating performance in heterogeneous
LiDAR place recognition while including an evaluation for long-
term recognition, showcasing its ability to handle unseen LiDAR
types. We release the HeLiOS code as an open source for the
robotics community at https://github.com/minwoo0611/HeLiOS.

I. INTRODUCTION

LiDAR Place Recognition (LPR) identifies whether a
location was previously visited by comparing current scans
to past ones from a pair of Light Detection and Ranging
(LiDAR) scans. Among many LiDAR types, high-resolution
spinning LiDARs have been the most popular choice [1–4] to
handle occlusions and deliver extensive data from their 360-
degree coverage and comprehensive information. However,
the reliance on high-resolution systems has constrained the
generalized solutions across various LiDAR types.

In this paper, we shift the focus from this popular 360◦

scanning LiDAR to a diverse range of different LiDAR types,
highlighting challenges in heterogeneous LPR. For example,
limited data from narrow field of view (FOV) solid-state
LiDARs [5–7] reintroduce complexity to the problem. Res-
olution difference among sensors raised an issue as sparsity
caused the same structure to appear differently, making it
challenging to use 2D convolution [8, 9] or methods that are
adapted from Visual Place Recognition (VPR) [10]. The new
scanning patterns introduced by Livox and Robosense [11]
capture the surroundings in a completely different manner.
As a result, the data varies significantly from sensor to sensor,
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Fig. 1: HeLiOS utilizes overlap for mining and the loss function. Conventional distance-
based mining might lead to incorrect pairings, such as blue-yellow circles (close
distance, no overlap) or black-yellow circles (far apart, overlap). Incorrect pairings
can negatively impact both the training process and overall performance.

even when viewed from the same location. These disparities
pose significant challenges for heterogeneous LPR [12].

Recently, transformer-based methods [8, 9] boosted per-
formance to tackle similar challenges such as Ground-Aerial
LiDAR [13] or Camera-LiDAR place recognition [14, 15].
However, applying transformers to heterogenous LiDARs of-
ten fails to encode data into a common embedding space due
to different distributions, while using individual transformers
for each source remains a limitation of generalizability.
Handcrafted algorithms [5–7] offer viable solutions, but they
require multiple scans and specific poses. Furthermore, their
applicability for heterogeneous LiDARs is still limited as the
validation is only done within homogeneous LiDARs.

In this paper, we present a novel network for single
scan heterogeneous LPR, that addresses variations in FOV,
resolution, and scanning patterns. We extend the spherical
transformer [16] along the radial direction to create smaller
patches to better capture the point cloud’s local distributions.
Global descriptors are generated using optimal transport-
based cluster assignment [17], which filters out uninfor-
mative features while preserving the original distribution
of local features. Moreover, our descriptor offers a flexible
dimension range, allowing customization based on the user’s
objectives and requirements. An overlap-based data mining
and Truncated Smooth-AP (TSAP) loss with guided-triplet
loss are introduced to optimize the training process. The
overlap-based approach addresses the inaccuracies associated
with distance-based methods, providing more consistent con-



straints through a semi-positive class, as illustrated in Fig. 1.
Our main contributions are as follows:
• We introduce HeLiOS, a deep network to overcome

the major challenges of heterogeneous LiDARs: diverse
scanning patterns, FOVs, and resolutions. Using the
sparse convolution and spherical transformer with a
local window, HeLiOS captures both low-level and
high-level information. To our knowledge, this is the
first method tailored for heterogeneous LiDAR systems.

• We propose overlap-based data mining and guided-
triplet loss to capture the relationships between LiDAR
descriptors, overcoming the limitations of discrete
classes in traditional triplet loss and reducing wrong
classes in distance-based mining. Our semi-positives
ensure comprehensive constraints across various labels.

• HeLiOS is validated on public datasets, exhibiting supe-
rior performance in inter-LiDAR and inter-session place
recognition compared to state-of-the-art (SOTA) meth-
ods. We open-source HeLiOS for LPR’s community.

II. RELATED WORK

A. Deep Learning in LiDAR Place Recognition

A seminal work in the learning-based LPR, Point-
NetVLAD [18] used PointNet [19] for feature extraction.
Traditional methods [20, 21] relied on Multi-Layer Percep-
tion (MLP), enhancing global descriptors by improving local
contextual relationships and minimizing information loss. To
reduce computational costs and better encode point cloud,
OverlapTransformer [9] and CVTNet [8] chose 2D convo-
lutions on images of projected point cloud, but it struggles
on various image formats of heterogeneous LiDARs. Other
methods [22–24] applied sparse convolution for efficient 3D
computation, but still requiring performance improvements.

Recent studies employed transformer [8, 24] to enhance
LPR performance. While these approaches show improve-
ment for homogeneous LiDARs, they struggle with het-
erogeneous LPR due to varying data distributions, com-
plicating the effective learning of attention mechanisms.
For example, SALSA [25] utilized SphereFormer [16] for
feature extraction with multi-head attention applied within
spherical windows. However, the windows are too large
to accurately capture the distinct distributions of different
LiDARs, limiting their effectiveness in heterogeneous LPRs.

Our model leverages sparse convolution and transformer
but focuses on adaptation for heterogeneous LiDARs. We
divide the spherical window into smaller regions based on
spherical coordinates (r, θ, φ), allowing the transformer
to learn local distributions. Additionally, our model uses
a shared encoder to generate descriptors that are effective
across different LiDARs, distinguishing it from methods
focused on multi-modal place recognition [14, 15, 26].

B. Data Mining Strategies and Losses for Place Recognition

Traditional LPR relied on distance-based sampling to
generate positive and negative samples for data mining.
However, this approach faced challenges with narrow FOV
LiDARs, as scans from the same location may not overlap.

Leyva-Vallina et al. [27] used overlap for data mining,
but their method, tailored for images and dense maps, is
unsuitable for sparse LiDARs. Similarly, OverlapNet [28]
requires the height and width of the range image, making
it hard to decide the common format for different LiDARs.
In contrast, our approach calculates overlap directly in 3D
space considering scan density. We classify data into positive,
semi-positive, and negative to position descriptors within
embedding space to be more suitable for heterogeneous LPR.

Moreover, LPR traditionally used triplet loss [29] and
contrastive loss [30], which are designed for discrete class
tasks like image classification [31, 32], limiting their effec-
tiveness in LPR. Leyva-Vallina et al. [27] improved this by
multiplying overlap with contrastive loss, but sample with
small overlap can still be embedded near the negatives.
OverlapNet [28] utilized overlap in loss without affecting
descriptor distribution. LoGG3D-Net [23] introduced local
consistency loss for better feature similarity but struggles
with varying scanning patterns and density. MinkLoc3Dv2
[22] used TSAP loss to improve average precision for top k
positives but lacks explicit distance constraints. We combine
TSAP loss with guided-triplet loss, adding overlap-based
margin constraints to regulate descriptor distances better.

III. METHODOLOGY

A. Problem Definition

LPR aims to generate a global descriptor from a point
cloud P ∈ RN×3, where the N points are defined by its
spatial coordinates (x, y, z). To encode the point cloud into
a descriptor, a mapping function Ω = h(f( · )) is employed,
where the feature extraction function f( · ) : RN×3 → Rn×d

derives local embeddings from N points, and the aggregation
function h( · ) : Rn×d → Re compresses these embeddings
into a global descriptor g ∈ Re of fixed dimensions. The
goal is to optimize Ω to meet the following conditions:

D(xq,xi) D(xq,xj) =⇒ dg(gq, gi) < dg(gq, gj), (1)

while x denotes the locations of the point cloud, D( · ) repre-
sents the distance between the locations, and dg( · ) signifies
the distance within the embedding space. Optimization of Ω
is achieved through metric learning, applying a loss function
to the global descriptor derived from the training set.

B. Locality-aware Feature Extraction Network

To encode local features from point clouds, we utilize a
U-Net style architecture with sparse convolution [33]. Point
clouds are voxelized along the (x, y, z) axes, ensuring
uniform resolution in 3D space. While sparse convolution
effectively captures local information within each voxel,
the variations in coverage and scanning patterns across
heterogeneous LiDARs present significant challenges. The
differing distribution of heterogeneous LiDARs disturbs their
application by potentially causing divergence during training,
even with transformers or self-attention that provide a viable
solution for embedding point clouds into a common space.

To focus on local distribution rather than global distri-
bution, we divide the space with a spherical window and
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Fig. 3: Local spherical window for applying multi-head attention in heterogeneous
LPR. Due to the differing global distribution when scanning the entire scene with
different LiDARs, training attention is challenging. Distribution is closer within smaller,
localized windows, enabling effective attention learning.

leverage multi-head attention as Fig. 3. Inspired by vision
transformer [34] that segment images into patches, we apply
multi-head attention to 3D voxels within spherical windows
defined by spherical coordinates (r, θ, φ). As the volume of
spherical windows increases with r for the same θ and φ,
multi-head attention using a consistent cubic window is also
applied to complement local information. Consequently, each
half of the multi-head attention output is derived from cubic
and spherical windows. This approach differs from Sphere-
Former [16], which uses full-radius spherical windows.

We apply the spherical transformer only where skip con-
nections exist, allowing attention to be processed while
preserving the output from the sparse convolution layer.
Additionally, as the voxels are progressively downsampled
through the model, some windows may not contain enough
voxels. To address this, when each time sparse convolution
with stride is applied, the spherical window scale is expanded
by 1.5, while the cubic window scale remains constant. Our
feature extraction network pipeline is illustrated in Fig. 2.

C. Feature Aggregation with optimal transport

Different LiDARs generate varying numbers of local
features F ∈ Rn×d, complicating feature aggregation. To
address this, we adapt a clustering-based approach that is less
sensitive to these variations. Specifically, we adapt SALAD
[17] from vision tasks, where image patches are used as
input. We consider voxels with local features as patches,
enabling us to apply a method designed for a different task.

F is processed through a channel-wise convolution layer to
predict the score matrix, S ∈ Rn×m, where m is the cluster
number. To manage non-informative points, a dustbin column
is added, modifying the score matrix to S̄ ∈ Rn×(m+1).
The Sinkhorn algorithm [35] is then applied to optimize

the feature-to-cluster assignment, creating a refined score
matrix R ∈ Rn×m obtained by iteratively normalizing the
rows and columns of exp(S̄) and dropping the dustbin. To
align features with the cluster space, F is projected to a
lower-dimensional F̄ ∈ Rn×l. Finally, the aggregated feature
matrix V ∈ Rm×l is computed, where Vj,k is:

Vj,k =

n∑
i=1

Ri,k · F̄i,j (2)

To address the loss of global context that may occur
during the clustering process, we also employ GeM pooling
[36] combined with MLP layers. This produces a compact
global representation G ∈ Re. The final descriptor is created
by concatenating the flattened global features G with the
aggregated features V, ensuring a comprehensive represen-
tation with minimal dimensional increase. The descriptor
g ∈ Rm×l+e is then utilized for both training and evaluation.

Unlike conventional place recognition that utilizes 256
or 512 descriptor dimension, HeLiOS exploits the various
dimension based on m, l and e. This approach offers flexi-
bility in adjusting the dimension, allowing users to balance
computational requirements and performance by customizing
the trade-off between time complexity and accuracy.

D. Overlap Guided Metric Learning

1) Overlap-Based Data Mining: Traditional metric learn-
ing for place recognition often relies on distance-based sam-
pling, which can fail with heterogeneous LiDARs as Fig. 1.
The naive distance-based sampling may result in unrelated
positives or negatives, requiring a more refined approach
considering LiDAR-specific characteristics. To address this,
we employ an overlap-based data mining method, where
defining the overlap between point clouds, P1 and P2, as:

Ô(P1, P2) =
2×

∑N1

i=1 1
(
NN(P i

1, P2) < τ
)

N1 +N2
, (3)

where NN returns the distance to the nearest neighbor in the
other point cloud, and 1( · ) is an indicator function. The
overall process can be found in Fig. 4(a). To reduce the
computationally expensive n×n overlap matrix calculation,
where n is the number of samples, we truncate the overlap
calculation if the distance exceeds twice the maximum scan
range. Furthermore, point clouds are voxelized with size δ
to reduce computational costs and standardize resolution,
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only when each point falls into the same pixel in a range image.

preventing the large overlap in dense regions. We set τ =
1.5δ to ensure robustness to minor misalignment.

The use of the maximum overlap value ensures stable and
consistent learning, keeping the overlap constant between the
point clouds in a reversed relation. Final overlap is computed
as O(P1, P2) = max(Ô(P1, P2), Ô(P2, P1)) with a maxi-
mum threshold of 1. Our method addresses challenges in
determining overlap with range images of different LiDARs,
such as varying resolutions [28] and the sparsity of LiDAR in
3D space [27], providing a reliable overlap measurement as
Fig. 4(b). Scans are categorized as positive if overlap is over
0.5, semi-positive between 0 and 0.5, and negative if zero,
enhancing robustness and generalization in metric learning.

2) Guided-Triplet Loss: In LPR, the balance of ranking
relevant scans and controlling their distances in the em-
bedding space is crucial for robust model. The TSAP loss
LT SAP [22] ranks the top k positives but lacks explicit
control over distances between positive (p) and negative (n)
from the query (q). This leads to a dispersed distribution
of descriptors with poorly defined boundaries, reducing the
discriminative power and causing instability during training.

To address these limitations, we introduce a combined loss
function that incorporates both LT SAP and a guided-triplet
loss LGT . Unlike triplet loss LT with a fixed margin to sepa-
rate two classes, guided-triplet loss employs adaptive margins
based on the overlap to allow more general regulation of
distances. This reflects varying degrees of similarity between
scans and ensures that the embeddings are more distributed
and distances are effectively controlled. Additionally, we
incorporate two LGT based on the relationship with semi-
positives (s) and the others. Semi-positive should be closer
to positives but still separated from them and positioned far
from negatives. Guided-triplet loss LGT is formulated as:

LGT (q, u, v) = max(dg(q, u)− dg(q, v) + αuv, 0), (4)

where dg( · ) are distances in the embedding space, and αuv

is the adaptive margin based on overlap. The adaptive margin
αps for positive and semi-positive pair, and αsn for semi-
positive and negative pair are defined as:

αuv =

{
m1 · (OV(q, p)− OV(q, s)) if (u = p, v = s)

m2 · (OV(q, s)− OV(q, n) + 1) if (u = s, v = n)

OV(q, u) , log(β · O(q, u) + 1), (5)

where m1, m2, and β are the scale factors, and logarithm
regularizes the effect of overlap, ensuring large overlaps yield
similar values while amplifying differences of small overlaps.
In (5), we add OV(q, n) for the readability, even if it is
always zero. To divide the semi-positive and negative more
distinctly, an additional distance of m2 is provided for αsn.

By combining LT SAP with LGT , our total loss function
not only focuses on ranking the most relevant scans but
also maintains appropriate distances between positives, semi-
positives, and negatives. The total loss function is given as:

L = LT SAP + ω1 ·LGT (q, p, s) + ω2 ·LGT (q, s, n), (6)

which enhances model generalization by ensuring well orga-
nization of global descriptors in the embedding space.

IV. EXPERIMENT

A. Implementation Details

We trained HeLiOS on a GeForce RTX 3090 for 80 epochs
using a MultiStepLR scheduler with an initial learning rate of
0.001. The maximum range is limited to 100m , and the 8192
points from a single scan are normalized within [−1, 1]. The
spherical windows are set to (10m, 1.8◦, 1.8◦), and the voxel
size d for overlap calculation is 4m. For the guided-triplet
loss, the weights ω1 and ω2 are set to 0.1, and the scaling
factors (m1,m2, β) are configured as (0.02, 0.19, e− 1).

B. Datasets and Evaluation Metric

We evaluated HeLiOS on three public datasets: NCLT
(HDL-32E) [37], MulRan (OS1-64) [38], and HeLiPR (OS2-
128, Livox Avia, Aeva Aeries II, and VLP-16C) [12].
We compared HeLiOS against several methods, including
PointNetVLAD [18], LoGG3D-Net [23], CASSPR [24],
CROSSLOC3D [13], MinkLoc3Dv2 [22], and handcrafted
descriptor SOLID [7], applying our overlap criteria across
all benchmarks for a fair comparison.

We chose Average Recall@k (AR@k) for evaluation. A
retrieval is correct if the overlap between the query and
retrieval exceeds 0.5. HeLiOS with parameters (m, l, e) =
(64, 128, 256) is evaluated to demonstrate its complex de-
scriptor capability. For fairness, a smaller architecture,
HeLiOS-S, is also configured with lightweight parameters
(m, l, e) = (8, 32, 0) for a descriptor dimension of 256.

C. Heterogeneous LiDAR Place Recognition

The HeLiPR dataset is used for heterogeneous LPR.
Training is conducted on DCC04-06, KAIST04-06, and
Riverside04-06 with four LiDAR types, sampled at
5m intervals, totaling 41k samples. Testing is conducted
on Roundabout01-03, Town01-03, Bridge01 (paired
with 04), and Bridge02 (paired with 03) to ensure suffi-
cient overlap, with 96k samples also sampled at 5m.

Queries are classified by grouping Aeva and Livox as
“Narrow” and Ouster and Velodyne as “Wide”. The first
sequences of Aeva and Ouster are chosen as databases,
while all sequences and LiDARs at each location are queried
against them. For example, to evaluate Ouster and “Wide” in
Roundabout, the database is Roundabout01-Ouster,



TABLE I: Performance Comparison with Heterogeneous LiDARs (Red: Best, Blue: Second Best)

Roundabout Town Bridge01 Bridge02
Narrow Wide Narrow Wide Narrow Wide Narrow WideDB Methods

AR@1 AR@5 AR@1 AR@5 AR@1 AR@5 AR@1 AR@5 AR@1 AR@5 AR@1 AR@5 AR@1 AR@5 AR@1 AR@5

SOLID [7] 0.054 0.146 0.278 0.386 0.124 0.300 0.292 0.404 0.027 0.073 0.321 0.394 0.038 0.098 0.293 0.371
PointNetVLAD [18] 0.297 0.518 0.586 0.744 0.291 0.530 0.474 0.664 0.329 0.495 0.704 0.823 0.362 0.558 0.646 0.754
LoGG3D-Net [23] 0.012 0.038 0.151 0.295 0.011 0.049 0.098 0.241 0.027 0.032 0.219 0.320 0.012 0.047 0.186 0.373
CASSPR [24] 0.182 0.407 0.478 0.703 0.178 0.418 0.376 0.598 0.220 0.423 0.548 0.702 0.234 0.482 0.488 0.634
CROSSLOC3D [13] 0.499 0.785 0.796 0.876 0.565 0.785 0.739 0.876 0.547 0.745 0.810 0.906 0.555 0.756 0.781 0.891
MinkLoc3Dv2 [22] 0.620 0.790 0.870 0.928 0.660 0.838 0.817 0.919 0.650 0.818 0.876 0.938 0.631 0.819 0.833 0.910
HeLiOS-S 0.637 0.801 0.880 0.929 0.686 0.862 0.828 0.918 0.660 0.828 0.880 0.950 0.649 0.827 0.831 0.921

O
us

te
r

HeLiOS 0.700 0.852 0.912 0.946 0.753 0.903 0.871 0.937 0.693 0.853 0.912 0.969 0.681 0.849 0.874 0.950

SOLID [7] 0.241 0.442 0.018 0.129 0.200 0.346 0.048 0.195 0.236 0.332 0.013 0.048 0.234 0.340 0.017 0.058
PointNetVLAD [18] 0.477 0.624 0.338 0.591 0.408 0.588 0.313 0.573 0.678 0.821 0.366 0.598 0.625 0.777 0.365 0.609
LoGG3D-Net [23] 0.022 0.094 0.029 0.096 0.033 0.116 0.026 0.101 0.015 0.062 0.011 0.052 0.026 0.098 0.025 0.249
CASSPR [24] 0.300 0.524 0.160 0.427 0.264 0.479 0.154 0.416 0.505 0.733 0.181 0.411 0.475 0.718 0.205 0.469
CROSSLOC3D [13] 0.711 0.836 0.634 0.846 0.635 0.800 0.581 0.833 0.790 0.907 0.665 0.865 0.738 0.876 0.665 0.848
MinkLoc3Dv2 [22] 0.750 0.846 0.722 0.882 0.664 0.806 0.620 0.831 0.853 0.931 0.742 0.896 0.801 0.895 0.737 0.885
HeLiOS-S 0.767 0.867 0.765 0.912 0.682 0.815 0.646 0.824 0.850 0.934 0.785 0.919 0.808 0.905 0.740 0.892

A
ev

a

HeLiOS 0.806 0.885 0.849 0.940 0.744 0.850 0.737 0.883 0.886 0.950 0.818 0.930 0.857 0.936 0.773 0.903
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Fig. 5: PR curves with heterogeneous LiDARs. The title of each curve represents
the database from Roundabout01 and the query from Roundabout02. HeLiOS
surpasses other methods regardless of the size of the descriptor.
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Fig. 6: R@N curves on Town03 with heterogeneous LiDARs are shown, where each
curve title indicates the database from Town01 and the query from Town03. HeLiOS
consistently outperforms other SOTA methods when retrieving the top 10 neighbors.

while results are averaged over the recalls of six cases (3
sequences × 2 LiDARs) to cover both intra-session and inter-
session. Scans within 30 seconds of the query are excluded
to prevent obvious matching occurs in intra-session.

As seen in Table. I, even with lightweight 256 dimensions,
HeLiOS-S surpasses others in most cases. Thanks to the
spherical transformer and overlap-based metric learning, He-
LiOS significantly outperforms all methods across all places.
Interestingly, MinkLoc3Dv2 achieves the third-best results
despite using only convolutional layers. In contrast, CASSPR
and CROSSLOC3D demonstrate weaker performance as
transformers applied to entire point clouds struggle with the
varying distributions of heterogeneous LiDARs. LoGG3D-
Net delivers inferior results, as its local consistency loss
fails to accommodate differing LiDAR distributions. SOLID
exhibits limitations in its descriptors across different FOVs.

We present the PR and AR@N curves for the top four
methods in Fig. 5 and Fig. 6. The PR curves display results
for Ouster with “Narrow” and Aeva with “Wide”. HeLiOS
outperforms others, achieving high recall and precision. The
top 10 neighbors and their recall are plotted in Fig. 6,
where HeLiOS excels in retrieving top candidates, with
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Fig. 7: Four-year long-term heterogeneous LPR between MulRan (purple) and HeLiPR
(black). Red and cyan indicate significant differences between point clouds. (a, b)
HeLiOS matches most queries despite long-term changes, demonstrating robustness to
scene variations. (c) A building (black) replacing bushes (purple) leads to failure due
to the drastic change in the scene’s appearance.

HeLiOS-S yielding better results even for Ouster. HeLiOS
on homogeneous LiDAR is further discussed in §IV-E.

D. Long-term Place Recognition with Heterogeneous LiDAR

Long-term place recognition between HeLiPR and Mul-
Ran is evaluated. We set KAIST01 from MulRan as
the query and KAIST04-Ouster from HeLiPR as the
database. Compared to KAIST04, a sequence from training,
KAIST01 is an unseen dataset captured with a different
system and LiDAR (OS1-64) with different FOV and oc-
clusion. Despite a four-year gap and scene changes, HeLiOS
successfully matches almost every query, as shown in Fig. 7.
Although some areas fail to retrieve, this occurs from entire
scene differences between the query and database, resulting
in distinct descriptors that understandably do not match.
This demonstrates HeLiOS’s capability for long-term place
recognition and retrieving scans from unseen datasets and
LiDARs in partial differences.

E. Homogeneous LiDAR Place Recognition

Differing from §IV-C, the networks are trained and evalu-
ated with homogeneous LiDAR data. For the NCLT dataset,
networks are trained on 8 sequences totaling 9.0k samples
and tested with data from 2012-11-16 as the database
and 2012-12-01 as the query with 1.8k samples. For the
HeLiPR dataset, training is done separately on Livox and



TABLE II: Performance Comparison with Homogeneous LiDAR

NCLT R01-03 (Aeva) R01-03 (Livox)
Method AR@1 AR@5 AR@1 AR@5 AR@1 AR@5

SOLID 0.217 0.409 0.423 0.537 0.331 0.479
PointNetVLAD 0.893 0.966 0.661 0.700 0.768 0.830
LoGG3D-Net 0.403 0.670 0.368 0.368 0.536 0.730
CASSPR 0.961 0.993 0.696 0.775 0.809 0.877
CROSSLOC3D 0.953 0.996 0.759 0.837 0.835 0.908
MinkLoc3Dv2 0.941 0.996 0.755 0.820 0.853 0.922
HeLiOS-S 0.953 0.992 0.777 0.842 0.831 0.900

TABLE III: Ablation Study with Loss for Each Class

Loss for class Aeva (DB) Ouster (DB)

(p, n) (s, n) (p, s) AR@1 AR@5 AR@1 AR@5

LT SAP LT SAP 0.701 0.847 0.722 0.854
- - 0.722 0.857 0.756 0.877
LT - 0.771 0.885 0.793 0.903

- LT 0.778 0.887 0.795 0.905
LT LT 0.778 0.885 0.800 0.903

LT SAP

LGT LGT 0.784 0.890 0.809 0.910

Aeva data, each totaling 10.3k samples. Place recognition is
performed with Roundabout01 as the database (R01) and
Roundabout03 as the query (R03), resulting in 3.4k test
samples for each LiDAR. Retrieval is considered correct if
the overlap exceeds 0.8, as homogeneous LiDARs typically
yield higher overlap than heterogeneous ones. As Table. II,
HeLiOS-S achieves comparable performance with others
despite not being designed for homogeneous LiDAR.

F. Ablation Studies

We conducted ablation studies to highlight the perfor-
mance differences and verify the impact of our proposed
modules on HeLiOS. Training setup follows §IV-C, while
results are average recall of both “Narrow” and “Wide” cases
for Roundabout and Town.

Effect of Loss Function: We assessed the effect of LGT
by keeping LT SAP fixed for positive and negative pairs
while varying the loss for (s, n) and (p, s) pairs, with ω1

and ω2 set to 0.1. As Table. III, applying LT SAP to both
class pairs only pushes the embeddings further apart, similar
to pushing query-negative pairs away from query-positive
pairs while leading to inaccuracy than applying only to (p, n)
pairs. Conversely, using LT for (s, n) and (p, s) allows for
additional performance improvements by providing distance
control not achievable with LT SAP alone. Proposed LGT
with overlap-based adaptive margins outperforms LT with
fixed margins. This shows that the adaptive margin of LGT
enhances the traditional discrete class separation, allowing
the embedding process to reflect the real-world better.

Variation in Spherical Transformer: We evaluated the
effect of spherical transformer under different configurations:
without the transformer, varying radial window size, and
applying expansion. Table. IV shows result with rf and rw
of 100m and 10m, and an expansion factor of 1.5. Larger
windows (rf ) result in slight performance improvements over
the no transformer case, suggesting larger windows dilute
attention on local patterns due to varying distributions of
heterogeneous LiDARs. Conversely, smaller windows (rw)
lead to significant performance gains as the network better

TABLE IV: Ablation Study for Sphere Transformer Variations

Aeva (DB) Ouster (DB)
Method AR@1 AR@5 AR@1 AR@5

w/o S.T. 0.772 0.883 0.797 0.904
S.T. w/ rf 0.778 0.888 0.795 0.901
S.T. w/ rw 0.778 0.891 0.801 0.906
S.T. w/ rw (Expanding) 0.784 0.890 0.809 0.910

TABLE V: Recall and Runtime with Various Dimension

Dimension Aeva (DB) Ouster (DB) Runtime (ms)
(m, l, e) AR@1 AR@5 AR@1 AR@5

(8, 32, 0) 0.715 0.854 0.758 0.877 26.4 + 0.7
(16, 32, 0) 0.751 0.874 0.773 0.890 26.4 + 1.2
(32, 64, 0) 0.758 0.878 0.781 0.894 26.4 + 5.0
(32, 64, 256) 0.772 0.886 0.792 0.901 26.5 + 5.5
(64, 128, 0) 0.778 0.886 0.796 0.902 26.5 + 19.6
(64, 128, 256) 0.784 0.890 0.809 0.910 26.5 + 19.8

captures local features while reducing the impact of differ-
ing distribution. Gradual expansion ensures local windows
contain enough points for attention even in deeper layers,
enhancing spatial information encoding of the network.

Multi Scalability: As Table. V, the effect of descriptor di-
mensions on performance, time complexity, and using GeM
in feature aggregation are examined. Runtime is split into
inference time (including preprocessing) and retrieval time
based on a database of approximately 1.6k samples. A larger
dimension improves recall while inference time remains
almost constant as descriptor expansion is managed within
the aggregator; however, retrieval time increases due to
distance calculations. All configures achieve real-time speed
below the 10Hz LiDAR frequency. e = 256 configuration,
including GeM, yields notable gains with minimal dimension
expansion. Notably, (32, 64, 256) performs similarly to (64,
128, 0), and even higher dimensions like (64, 128, 0) is
benefited from additional concatenation. This indicates that
combining GeM and MLP effectively compensates for infor-
mation loss during clustering assignments as the class token
in the vision transformer, enhancing the global descriptor
with the addition of smaller dimensions.

V. CONCLUSION

In this paper, we present HeLiOS, the first deep network
for heterogeneous LPR. HeLiOS utilizes a local spherical
transformer to learn the local distribution from each LiDAR
and optimal transport-based clustering to aggregate the local
features. Our overlap-based data mining and guided-triplet
loss address the limitations of distance-based mining and
fixed-margin triplet loss, resulting in more effective em-
beddings. Evaluations with public datasets show HeLiOS
outperforms existing methods and demonstrates robustness in
long-term place recognition with unseen LiDARs. Ablation
studies validate the impact of proposing loss functions, model
architecture, and descriptor dimensions. As the first heteroge-
neous LPR framework, HeLiOS opens up new opportunities
for future work, including reranking tasks to enhance perfor-
mance or integration with LiDAR simultaneous localization
and mapping (SLAM) and multi-robot applications.
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kloc++: lidar and monocular image fusion for place recog-
nition,” in Intl. Joint Conf. on Neural Networks, 2021, pp.
1–8.

[16] X. Lai, Y. Chen, F. Lu, J. Liu, and J. Jia, “Spherical trans-
former for lidar-based 3d recognition,” in Proc. IEEE Conf.
on Comput. Vision and Pattern Recog., pp. 17 545–17 555.

[17] S. Izquierdo and J. Civera, “Optimal transport aggregation for
visual place recognition,” in Proc. IEEE Conf. on Comput.
Vision and Pattern Recog., 2024, pp. 17 658–17 668.

[18] M. A. Uy and G. H. Lee, “Pointnetvlad: Deep point cloud
based retrieval for large-scale place recognition,” in Proc.
IEEE Conf. on Comput. Vision and Pattern Recog., 2018, pp.

4470–4479.
[19] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep

learning on point sets for 3d classification and segmentation,”
in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2017, pp. 652–660.

[20] Z. Liu, S. Zhou, C. Suo, P. Yin, W. Chen, H. Wang, H. Li, and
Y.-H. Liu, “Lpd-net: 3d point cloud learning for large-scale
place recognition and environment analysis,” in Proc. IEEE
Intl. Conf. on Comput. Vision, 2019, pp. 2831–2840.

[21] J. Guo, P. V. Borges, C. Park, and A. Gawel, “Local descriptor
for robust place recognition using lidar intensity,” IEEE Robot.
and Automat. Lett., vol. 4, no. 2, pp. 1470–1477, 2019.

[22] J. Komorowski, “Improving point cloud based place recog-
nition with ranking-based loss and large batch training,” in
Proc. Intl. Conf. Pattern Recog., 2022, pp. 3699–3705.

[23] K. Vidanapathirana, M. Ramezani, P. Moghadam, S. Srid-
haran, and C. Fookes, “Logg3d-net: Locally guided global
descriptor learning for 3d place recognition,” in Proc. IEEE
Intl. Conf. on Robot. and Automat., 2022, pp. 2215–2221.

[24] Y. Xia, M. Gladkova, R. Wang, Q. Li, U. Stilla, J. F.
Henriques, and D. Cremers, “Casspr: Cross attention single
scan place recognition,” in Proc. IEEE Intl. Conf. on Comput.
Vision, pp. 8461–8472.

[25] R. G. Goswami, N. Patel, P. Krishnamurthy, and F. Khorrami,
“Salsa: Swift adaptive lightweight self-attention for enhanced
lidar place recognition,” IEEE Robot. and Automat. Lett.,
2024.

[26] Z. Zhou, J. Xu, G. Xiong, and J. Ma, “Lcpr: A multi-
scale attention-based lidar-camera fusion network for place
recognition,” IEEE Robot. and Automat. Lett., 2023.

[27] M. Leyva-Vallina, N. Strisciuglio, and N. Petkov, “General-
ized contrastive optimization of siamese networks for place
recognition,” 2023.
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