ROBOTICS Reference Minwoo Jung¹ moonshot@snu.ac.kr [1] M. Helmberger, K. Morin, B. Berner, N. Kumar, G. Cioffi, and D. Scaramuzza, "The hilti slam challenge dataset," Sangwoo Jung¹ dan0130@snu.ac.kr IEEE Robot. and Automat. Lett., vol. 7, no. 3, pp. 7518–7525, 2022. [2] L. Hsu, N. Kubo, W. Wen, W. Chen, Z. Liu, T. Suzuki, and J. Meguro, "Urbannav: An open-sourced multisensory Ayoung Kim¹ ayoungk@snu.ac.kr dataset for benchmarking positioning algorithms designed for urban areas," in ION GNSS+, 2021, pp. 226–256. ¹ Seoul National University Visit the Link! Summary Continous-time interpolation for multiple asynchronous LiDAR Link for MA-LIO Github Repository! • Tackling field-of-view discrepancies in LiDAR If you scan the QR, you can find ... **Point-wise Uncertainty based on range and acquisition time** Source code of MA-LIO • Reflecting the ambiguity resulting from measurement Dataset link for City dataset Localization weight based on the distribution of normal vector

MA-LIO: Multiple Asynchronous LiDAR-Inertial Odometry with Time-dependent Point-wise Uncertainty

ROBOTICS SCIENCE AND SYSTEMS

• Balancing prior and measurement residual, providing automatic adjustments in challenging environments

Compatibilty with any LiDAR type and scanning patterns

• Validation across three datasets (Hilti 2021, UrbanNav and City)

(Consist of 2 Livox and 1 Ouster)

Link for Paper and Results (Youtube)

Feel free to scan, and enjoy our project.

Results

TABLE I: APE for Hilti SLAM Dataset 2021

	Ours	Fast-H	Fast-O	M-LOAM	LOCUS 2.0	_
Basement	0.036	0.709	0.046	0.115	0.120	-
Campus	0.046	0.063	0.063	0.386	0.087	
Construct	0.063	0.200	0.088	2.647	0.290	
LAB	0.024	Err	0.026	0.064	0.040	
UZH	0.177	0.233	0.184	0.276	0.177	

The best results are in **bold** and the second-best's are in *italic*.

TABLE II: UrbanNav and Our Dataset Evaluation

		Fast-LIO2	M-LOAM	LOCUS 2.0	Ours
Mongok	APE	<i>5.917</i>	25.899	6.846	2.579
	RPE	0.188	0.632	<i>0.174</i>	0.167
Whampoa	APE	7.066	31.482	18.124	4.236
	RPE	0.390	0.710	<i>0.339</i>	0.207

Conclusion

A framework for multiple asynchronous LiDAR-inertial systems that mitigates temporal discrepancies and frame change ambiguities.
Presenting point-wise uncertainty propagation based on acquisition time and range, and localization weight based on normal vector.
Surpassing the state-of-the-art in accuracy, robustness, and suggesting the importance of multiple LiDAR attachment.

-100

-200

-300

-400