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Abstract—Recently, multiple Light Detection and Ranging
(LiDAR) systems have seen increased usage due to their amplified
accuracy and stability from an expanded field of view (FOV).
Nevertheless, combining multiple LiDARs presents a challenge
due to temporal and spatial differences. Common practice is
transforming points among sensors while requiring strict time
synchronization or approximating transformation among sensor
frames. Unlike existing methods, we exploit continuous-time (CT)
inertial measurement unit (IMU) modeling to elaborate inter-
sensor transformation and derive associated ambiguity as a point-
wise uncertainty achieved by combining state covariance with
the acquisition time and point range. It lessens the need for
strict time synchronization and overcomes FOV differences. We
validated our method on several datasets, and it is compatible
with various LiDAR manufacturers and scanning patterns.

I. INTRODUCTION & RELATED WORKS

Over the last decades, robot navigation using LiDAR has
substantially advanced localization and map construction. Al-
though existing methods mostly solve for a single LiDAR
system, limited FOV and occlusion lead to a need for multiple
LiDARs. When integrating multiple LiDARs in a complemen-
tary configuration, two significant challenges impede naive
integration, namely temporal and spatial discrepancy.

(i) Synchronization: A tempting and straightforward ap-
proach to integrating measurements is to enforce strict time
synchronization among sensors, as exemplified by M-LOAM
[8]. This can be performed by Pulse per Second (PPS) via
external hardware and Precision Time Protocol (PTP); how-
ever, their support varies among manufacturers, necessitating
compatible sensor combinations. Due to this sophisticated
setting for synchronization, some asynchronous public datasets
[4, 5, 15, 16] require software solutions to handle temporal
discrepancies; however, some of the solutions [16, 10] induced
information loss and error in degenerate environments. Nguyen
et al. [14] and Wang et al. [17] exploited the IMU to compen-
sate for temporal discrepancies. The idea of utilizing IMU was
affordable; still, the error originating from discrete propagation
remains. Some researchers suggested using optimization in
continuous-time formulation [11, 13]. While this approach
can estimate the entire trajectory at anytime, its computational
intensity limits real-time viability. Our method sets itself apart
by utilizing all available data, including asynchronous scans,
while avoiding linear approximation. B-Spline interpolation is
used instead to estimate each LiDAR measurement trajectory,
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Fig. 1: (a) CT IMU interpolation enables us to merge points accurately, thus substantially
increasing net FOV in the accumulated map. (b) Two types of uncertainties are considered
in this paper (c) Example of FOV difference in multi-LiDAR datasets.

offering a computationally efficient solution for multi-LiDAR
SLAM in real-world environments.

(ii) Spatial discrepancy: Another solution for the temporal
discrepancy is to apply scan matching for correction. However,
different scanning patterns and small FOVs can create spatial
discrepancies, challenging this approach. Specifically, non-
repetitive scanning patterns [4] and obliquely installed LiDARs
[5] can lead to little overlapping area among sensors.

(iii) Uncertainty propagation: The projection of points
among sensors incurs ambiguity due to the two discrepancies.
Proper uncertainty modeling can mitigate it across multiple
LiDARs. Recent research on LiDAR uncertainty focuses on
learning-based methods [2, 12, 9, 7]. Yet, like ours, model-
based strategies [17, 8, 1, 6] are also present. We assign point-
wise uncertainty based on range and acquisition time, differing
from the existing approach [17], which weights LiDAR residu-
als using IMU and LiDAR odometry discrepancies. Similar to
M-LOAM [8], our method utilizes state covariance and point-
wise uncertainty [1]. However, it is more flexible, not requiring
inter-LiDAR overlap for covariance update.

This paper introduces an asynchronous multiple LiDAR-
inertial odometry approach (Fig. 2), designed to overcome
aforementioned multi-LiDAR challenges. We model point-
wise uncertainty using the range and state covariance at
each time and calculate the localization weight based on
the surrounding environment for optimization. We efficiently
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Fig. 2: Our proposed method is threefold: pre-processing, state estimation, and mapping.
Pre-processing combines and undistort points via B-spline interpolation. The state
estimation manages point-wise uncertainty and applies IESKF until convergence. The
optimal state is then used in the IMU model for subsequent precise interpolation. Finally,
points are projected into an ikd-Tree based on uncertainty.

handle a large volume of points by employing the ikd-Tree
[19] and an Iterative Error State Kalman Filter (IESKF). Our
contributions are as follows:

1) We tackle FOV discrepancy by accurately transferring
points among LiDARs and using CT interpolation to
lessen temporal discrepancies, ensuring consistent inter-
LiDAR scan alignment despite large FOV variations.

2) Our method captures increased uncertainty at point-level
based on range and acquisition time, providing a broader
uncertainty management approach.

3) The localization weight balances prior and measurement
residuals during optimization, adjusting automatically in
degenerate environments such as narrow corridors.

II. METHOD

A. The Notion and State

Subscript A in notation ()A denotes the representing frame.
The frame B in frame A is denoted as ()AB . The ground truth
is represented as (), while propagated, error, and optimal state
are denoted as (̂), (̃), and (̄). For simplicity, we classify N
LiDARs as {Li, i = 1, · · · , N}, designating the LiDAR with
the latest sample point as P and all other LiDARs as S. Our
system comprises a state x, input u, and noise w as

M ≜ SO(3)× R15 × ΠN
i=1

(
SO(3)× R3)

x ≜ [RT
GI tTGI vT

GI bT
ω bT

a gT
G RT

ILi
tTILi

]T ∈ M

u ≜
[
ωT
m aT

m

]T
, w ≜

[
nT
ω nT

a nT
bω nT

ba

]T
. (1)

For the state x, transformation of the IMU frame (denoted as
I) in the global frame (denoted as G) is TGI = (RGI , tGI),
which consists of the rotation and translation. Additionally, v,
g, and b stand for velocity, gravity, and bias, while TIL denote
the extrinsic between LiDAR and IMU.

B. IMU Discrete Model with B-Spline Interpolation

The CT kinematic model can be converted into a discrete
model using the ⊞ outlined in [19] with the function f. Here,
function f transitions the system state with a parameterized
discretization interval ∆t. During the time interval between
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Fig. 3: IMU inputs are propagated and fed into B-spline interpolation. The LiDAR
with minimal time differences is selected. This facilitates (i) undistortion of a LiDAR
pointcloud into a single frame and (ii) compensation for temporal discrepancy using
relative transformations among the last points in each LiDAR.

(i − 1) and (i)th scans, the system estimates the trajectory
using the IMU, assuming the (i− 1)th state to be optimal.

x̂k+1 = x̂k ⊞ (∆tf (x̂k,uk, 0)) ; x̂0 = x̄i−1 (2)

Σ̂k+1 = Fx̃kΣ̂kFT
x̃i + Fwk

QkFT
wi
; Σ̂0 = Σ̄i−1 (3)

, where Qk denotes the covariance of wk while the jacobians
Fx̃k and Fwk

represent the derivatives of (xk+1 ⊟ x̂k+1) with
respect to each subscript, under the conditions that (x̃k, wk) =
(0, 0). Also, x̂k−1 can be achieved using the ⊟ operator as
detailed in [18]. Since the IMU discrete model before opti-
mization may not be accurate, the IMU state preceding x̄i−1

is recalculated via ⊟ operator for the accurate interpolation.
Based on propagation, B-spline interpolation is performed

using four transformations, known as control points from Tk−1
GI

to Tk+2
GI [13]. By this interpolation, trajectory at any time can

be estimated, which is especially beneficial for asynchronous
sensors. The transformation at time t ∈ [tk, tk+1) is

BTGI (s (t)) = Tk−1
GI Π3

n=1 exp
(
B̃j (s (t)) Ωk+n−1

)
(4)

, while variables can be seen in [13]. The notation BT means
that it is calculated by B-spline. Lastly, Σ̂k+1 is assigned to
BT computed at t ∈ [tk, tk+1) as its covariance (Fig. 3).

C. LiDAR Preprocessing with Uncertainty Propagation

Despite the strict interpolation, the interpolated pose accu-
racy is directly affected by the minimum difference in arrival
times among LiDARs. Therefore, a set of LiDAR is chosen
to minimize the sum of differences in the arrival times.

For undistortion, we focus on LiDAR S, which is samely
applied to LIDAR P . Relative transformations between frames
merge points from different times into one frame. By using B-
spline interpolation, point pSj at time tj gets transformed to
LiDAR frame at tl, yielding undistorted point puSj .

puSj = T−1
IS

BTIlIj TISpSj , (5)

, where tl is the latest arrival time in S, and u identifies
the undistorted point. Then, the temporal discrepancies due
to different arrival times are compensated for each LiDAR.
The latest arrival time (ti) of the latest LiDAR P (blue point
in Fig. 3) is leveraged to transform points from other LiDARs.

pP iSj = T−1
IP

BTIiIlTISp
u
Sj = T−1

IP
BTIiIj TISpSj . (6)



This transformation incorporates both undistortion and tem-
poral compensation over multiple frame changes, and errors
associated with these changes may accumulate.

The uncertainty must be propagated to each point using the
covariance to include the errors in the optimization. Covari-
ances of BT and TIL are achieved by (3) and IESKF. Also,
the covariance of inverse transformation is calculated through
Σinv = TΣTT , where T is the adjoint matrix of T−1. With
fourth-order approximation, the transformation and covariance
can be combined into {TP iSj ,ΣP iSj} [1], which tr(ΣP iSj )
is the acquisition time uncertainty visualized in Fig. 1.

Our improvements over previous research are twofold. We
assign uncertainty based on acquisition time, unlike [8], en-
abling more precise uncertainty modeling. Also, we eliminate
the need to designate a primary LiDAR. By employing ex-
trinsic covariances between LiDAR and IMU, we sidestep the
issue of secondary LiDAR exhibiting higher covariance than
the primary one, thus ensuring an equal impact on all LiDARs.
The transformed point into the frame P is presented as

pP iSj ≜ T̂P iSj p̂Sj = exp (ξ∧P iSj )TP iSj (pSj +Dζ)

≈ (I + exp (ξ∧P iSj ))TP iSj (pSj +Dζ) (7)

Here, ξ is the transformation error, and ζ ∈ R3 is the
measurement perturbation. Also, p in (7) is a 4 × 1 vector
with a scale value 1 added, and D is the dilation matrix which
transforms the dimension from 3×1 to 4×1, with zero terms
added. We only consider the first-order term, T̂p̂ ≈ q + Qθ

q := Tp, Q :=
[
(Tp)⊙ TD

]
,

[
ϵ
η

]⊙
:=

[
η1 − ϵ∧

0T 0T

]
(8)

θ :=
[
ξT ζT

]T
, θ ∼ N (0,Ξ) , Ξ = diag (ΣP lSj ,Z)

with the LiDAR measurement covariance Z. As pP iSj follows
the Gaussian distribution, the uncertainty of the point can be
obtained as Σp = QΞQT . The uncertainty is derived from the
point range from (Tp)⊙, and the acquisition time from ΣP lSj .

D. Iterated Error State Kalman Filter

Our system utilizes a plane measurement model, assuming
local planarity. The plane consists of the five closest neighbor-
ing points from the measurement in the ikd-Tree, accounting
for point uncertainty in the measurement model. The notation
L is used to denote the LiDAR, S or P . The weighted
covariance of the plane for point pLj , ΣLj , is computed as

ΣLj =

5∑
n=1

w2
nΣn, wn =

τ − tr (Σn)∑5
n=1[τ − tr (Σn)]

(9)

, while τ represents the uncertainty threshold. Based on the
normal vector of the plane, vGLj , and the plane covariance,
Σp, the measurement model is calculated as

hLj (xi, nLj ) =
vT
GLj

(
TGIi

BTIiIlTIL

(
pu
Lj + nLj

)
− qGLj

)
FIC (tr (ΣLj ) , smax, smin)

. (10)

Here, nLj represents the noise from the LiDAR, and qGLj

is a point located on the plane. Additionally, h represents the
measurement model, which is a summary of the terms of state,

including TGI and TIL. We employ fixed interval conversion
(FIC) to bind the uncertainty, which is calculated as

FIC(V, Imax, Imin) =
(Imax − Imin)(V − Vmin)

Vmax − Vmin
+ Imin, (11)

with Imax and Imin to be the rescaling interval. Utilizing
FIC, we balance V within set boundaries Vmax and Vmin,
enhancing reliability without overemphasis or neglect.

The state propagation component, as represented in equa-
tions (2) and (3), is utilized as the prior distribution, and its
error state is obtained through

xi ⊟ x̂i =
(
x̂κi ⊞ x̃κi

)
⊟ x̂i = x̂κi ⊟ x̂i + Jκx̃κ

i ∼ N (0, Σ̂i). (12)

Jκ represents the Jacobian matrix of
(
x̂κi ⊞ x̃κi

)
⊟ x̂i with the

condition that x̃κ
i = 0. When κ = 1, Jκ = I and transformation

term in x̂i becomes BTGIi . Further details are as in [18].
In the case of the measurement model, another distribution

can be identified through a first-order approximation:

0 = hLj (xi,nLj ) ≃ hLj

(
x̂κi , 0

)
+ Hκ

Lj x̃κk + vLj

−vj = zκLj + Hκ
Lj x̃κk ∼ N (0,ΣLj ) (13)

, where Hκ
Lj is the Jacobian of hLj

(
x̂κi ⊞ x̃κi ,nLj

)
with x̃κ

i ,
and vj is the noise with covariance calculated as in (8). Using
prior (12) and measurement distribution (13), the estimation
problem is changed into maximum a posteriori (MAP):

min
x̃κi

(
∥xi ⊟ x̂i∥2Σ̂i

+ w2
l

∑
L=P,S

m∑
j=1

∥zκLj + Hκ
Lj x̃κ

i ∥2R
Lj

)
(14)

, while RLj is the output from FIC(tr(ΣLj ),Rmax,Rmin), and
∥x∥2Σ = xTΣ−1x. The localization weight, wl, balances prior
distribution over measurements, particularly in degenerated
environments. wl can be computed from the ratio of σ1 to σ3

from Singular Value Decomposition (SVD) of measurement
normal vector. If wl exceeds the boundaries of (bmin, bmax),
wl is set as lmin or lmax respectively; otherwise, it is same
as FIC(w, lmax, lmin). An iterated Kalman filter can solve the
MAP problem with convergence criteria ∥x̂κ+1

i ⊟ x̂κ
i ∥ < ϵ, and

its estimates for state and covariance are detailed in [18].
After optimization, if the uncertainty of a point, tr(ΣLj ),

surpasses τ , it is not saved in the tree. Unlike the ikd-Tree,
our strategy accounts for uncertainty during insertion. If the
insertion point is within the diagonal of Z at the center of the
tree, we retain lower uncertainty points in our implementation.

III. EXPERIMENT

A. Dataset and Evaluation

To evaluate the performance of our method, we experi-
mented with three datasets: Hilti SLAM Dataset 2021 [4],
UrbanNav [5], and our dataset, collected using OS2-128, Livox
Avia and Tele. It involves challenging environments at higher
speeds (about 50 km/h ) with U-turns and tunnels.

Our method is compared with state-of-the-art methods in-
cluding Fast-LIO2 (single) [19], M-LOAM (multi) [8], and
LOCUS 2.0 (multi) [16]. Fast-LIO2 utilizes the central LiDAR
,which provides the most points. For the Hilti dataset, we
collect the trajectory from each LiDAR, OS0-64 (Fast-O),



TABLE I: APE for Hilti SLAM Dataset 2021

Ours Fast-H Fast-O M-LOAM LOCUS 2.0

Basement 0.036 0.709 0.046 0.115 0.120
Campus 0.046 0.063 0.063 0.386 0.087

Construct 0.063 0.200 0.088 2.647 0.290
LAB 0.024 Err 0.026 0.064 0.040
UZH 0.177 0.233 0.184 0.276 0.177

The best results are in bold and the second-best’s are in italic.
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Fig. 4: (a) Accumulated scans from LAB. Compared to Ouster (gray), Livox (red) reveals
limited FOV and causes localization failure. (b-c) show the outputs of Fast-O and our
method for the Parking dataset. As shown in the red box in (b), the map produced by
Fast-O is misaligned when returning to the starting point, while our result in (c) is well
aligned. (d) represents the trajectory produced from all methods in Mongok.

and Livox Horizon (Fast-H). Performance is quantitatively
compared by calculating the Root Mean Square Error (RMSE)
of the Absolute Pose Error (APE) [m] and Relative Pose Error
(RPE) [%] using the Evo evaluator [3]. For the Hilti dataset,
we use its evaluator for the APE. For our dataset, the ground
truth is sourced from an Inertial Navigation System (INS).

B. Quantitative Evaluation

In the Hilti dataset, our method consistently yields the
highest accuracy across all sequences according to the results
in Table. I. Fast-O ranks second in most cases, impressively
without multi-LiDAR usage. M-LOAM and LOCUS 2.0 are
less accurate than the others due to the absence of inter-LiDAR
synchronization. This lack of synchrony is less impactful in
LAB and UZH, with fewer movements, but causes higher errors
in Campus and Construct. Still, our method maintains ro-
bustness thanks to temporal compensation. Fast-H degrades a
phenomenon attributed to the limited FOV of LiDAR, leading
to tracking deviation. In this perspective, Fast-O seems the best
choice; however, it induces error in the Parking sequence
due to the short detection range. Our method overcomes this
by utilizing additional LiDAR, showing the strength of a multi-
LiDAR system, as evidenced in Fig. 4(b) and (c).

The results on UrbanNav and our dataset are presented
in Table. II. Our method demonstrates the most impressive
results. The trajectory becomes more inaccurate for M-LOAM
and LOCUS 2.0 due to errors arising from the asynchrony un-
der high-speed movement vehicle. For the UrbanNav dataset,
two inclined LiDARs allow a wider FOV. It allows for a num-
ber of measurements that cannot be observed with the central
LiDAR, resulting in high accuracy as shown in Fig. 4(d).

Additionally, City01-03 includes challenging environ-
ments such as a 4.3km route, a tunnel, and numerous dynamic
objects. While this makes the error higher than other datasets,
our method still achieves the highest accuracy. In City02,
our method successfully estimated the state even in a 400m
tunnel. Despite the various difficulties, ours maintained the

TABLE II: UrbanNav and Our Dataset Evaluation

Fast-LIO2 M-LOAM LOCUS 2.0 Ours

Mongok
APE 5.917 25.899 6.846 2.579
RPE 0.188 0.632 0.174 0.167

Whampoa
APE 7.066 31.482 18.124 4.236
RPE 0.390 0.710 0.339 0.207

TST
APE 8.783 53.682 33.292 2.342
RPE 0.494 2.177 0.841 0.351

City01
APE 9.970 33.907 23.998 6.538
RPE 0.292 0.955 0.609 0.266

City02
APE 35.308 72.382 58.211 6.707
RPE 0.608 3.665 1.531 0.565

City03
APE 6.951 33.801 21.753 5.470
RPE 0.996 1.310 1.159 0.565

Fig. 5: Partial maps of (a) City02 and (b) Whampoa display points color-coded by
localization weight, ranging from low (red) to high (pink). Both maps exhibit an apparent
weight decrease in tunnel regions, with (b) showing a less significant decrease due to
the upper part of the underpass being open and scanned by inclined LiDAR.

performance, demonstrating its reliability and robustness.

C. Ablation Study

(i) Localization weight: In Fig. 5, we depict partial maps
of the City02 and Whampoa. The narrow nature of these
environments may result in correspondence error, leading to
prior residuals having a stronger influence than measurement
residuals. As seen in Fig. 5(a) and (b), localization weight is
noticeably reduced only in degenerate surroundings, which is
expected and highlights the effectiveness of our localization
weight in such challenging environments.

(ii) The number of LiDAR: We analyze the impact of
the number of LiDAR on computation time and accuracy. In
Whampoa and City03, featuring the most extensive distance
among each dataset, our method consumes 47.7 and 79 ms to
support 10Hz, with three LiDARs. For accuracy, we evaluate
our method in two datasets. In Whampoa and City03, APE
decreases as the number of LiDAR increase, with (5.69,
4.01, 3.58) and (5.65, 5.08, 4.73). Notably, a significant error
reduction is observed when increasing the number of LiDAR
from one to two, while a minor reduction is seen when
increasing from two to three. This is because an increment
to two LiDARs provides sufficient constraint. Furthermore,
it may be a fallacy to posit that more LiDARs necessarily
give better performance. In City03, adding the Livox Avia
and Tele does not effectively reduce error due to their narrow
FOV and wide overlap with Ouster LiDAR. It emphasizes the
importance of LiDAR placement in a multi-LiDAR system.

IV. CONCLUSION

We proposed a framework for asynchronous multiple
LiDAR-inertial systems. Based on B-spline interpolation, it
handles temporal discrepancy among multiple LiDARs, and
models point-wise uncertainty to avoid ambiguity accumula-
tion. Furthermore, localization weight is utilized for enhanced
performance in challenging conditions. Our method, validated



on public and our datasets, offers real-time performance and
outperforms the state-of-the-art in accuracy and robustness..
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